Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2=5\)
\(\Leftrightarrow13x=13\)
hay x=1
\((x-2)^3-(x+5)(x^2-5x+25)+6x^2=11\\\Leftrightarrow (x-2)^3-(x+5)(x^2-5.x+5^2)+6x^2=11 \\\Leftrightarrow x^3-6x^2+12x-8 -(x^3+5^3)+6x^2-11=0 \\\Leftrightarrow 12x-144=0 \\\Leftrightarrow x=12\)
Vậy \(x=12\).
(x−2)3−(x+5)(x2−5x+25)+6x2=11
=>(x−2)3−(x+5)(x2−5.x+52)+6x2=11
=>x3−6x2+12x−8−(x3+53)+6x2−11=0
=>12x−144=0
=>x=12(x−2)3−(x+5)(x2−5x+25)+6x2=11
=>(x−2)3−(x+5)(x2−5.x+52)+6x2=11
=>x3−6x2+12x−8−(x3+53)+6x2−11=0
=>12x−144=0
=>x=12
Vậy x=12x=12.
cho tôi đúng đi
\(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
=>\(x^3-6x^2+12x-8-\left(x^3+125\right)+6x^2=11\)
=>\(x^3+12x-8-x^3-125=11\)
=>12x-133=11
=>12x=144
=>\(x=\dfrac{144}{12}=12\)
a, \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x+4\right)\left(x-4\right)=5\)
\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27-x\left(x^2-16\right)=5\)
\(\Rightarrow x^3-27-x^3-16x=5\)
\(\Rightarrow-16x-27=5\)
\(\Rightarrow-16x=32\Rightarrow x=-2\)
b, \(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
\(\Rightarrow x^3-6x^2+12x-8-\left(x^3-5x^2+25x+5x^2-25x+125\right)+6x^2=11\)
\(\Rightarrow x^3-6x^2+12x-8-x^3-125+6x^2=11\)
\(\Rightarrow12x-133=11\Rightarrow12x=144\Rightarrow x=12\)
Chúc bạn học tốt!!!
a)
\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x+4\right)\left(x-4\right)=5\)
\(\Rightarrow x^3-3^3-x.\left(x^2-16\right)=5\)
\(\Rightarrow x^3-27-x^3+16.x=5\)
\(\Rightarrow16x-27=5\)
\(\Rightarrow16x=32\)
\(\Rightarrow x=2\)
Vậy x = 2
b)
\(\left(x-2\right)^3-\left(x+5\right)\left(x^2-5x+25\right)+6x^2=11\)
\(\Rightarrow x^3-6x^2+12x-8-x^3-125+6x^2=11\)
\(\Rightarrow12x-133=11\)
\(\Rightarrow12x=144\)
\(\Rightarrow x=12\)
Vậy x = 12
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
+(x-3)2-x2=11
x2-6x+9-x2=11
-6x+9=11
-6x=2
x=2:-6
x=-1/3
(6x-3)2-36x(x-1)=40
36x2-36x+9-36x2+36x=40
9=40
=> đề sai
(2-x)2-7(x2+11)=0
4-4x+x2-7x2-77=0
-73-4x-6x2
ht bt
a: \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
=>-12x-15=9
=>-12x=24
hay x=-2
b: \(\Leftrightarrow9x^2-6x+1+2x^2+12x+18+11\left(1-x^2\right)=6\)
\(\Leftrightarrow11x^2+6x+19+11-11x^2=6\)
=>6x+30=6
=>6x=-24
hay x=-4
c: \(\Leftrightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)
=>3x=1
hay x=1/3
d: \(\Leftrightarrow x^3-6x^2+12x-8-x\left(x^2-1\right)+6x^2=5\)
\(\Leftrightarrow x^3+12x-8-x^3+x=5\)
=>13x=13
hay x=1
e: \(\Leftrightarrow x^3-27-x^3+16x=5\)
=>16x=32
hay x=2
1,\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{13}{5}\end{cases}}\)
2,\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\Leftrightarrow\orbr{\begin{cases}5x^2+3x-2=4x^2-3x-2\\5x^2+3x-2=-4x+3x+2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\9x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(3x\right)^2=2^2\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=0or-6\\x=-\frac{2}{3}or\frac{2}{3}\end{cases}}\)
3,\(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+4x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x\left(x+4\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=0or-4\end{cases}}\)
4,\(5x\left(x-2000\right)-x+2000=0\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}\)
5,\(5x\left(x-2\right)-x+2=0\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\5x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)
6,\(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
7,\(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(2x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\2x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
tí làm nửa kia
8,\(x^2-6x+8=0\Leftrightarrow x^2-6x+9-1=0\Leftrightarrow\left(x-3\right)^2-1^2=0\)
\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
9,\(9x^2+6x-8=0\Leftrightarrow9x^2+6x+1-9=0\Leftrightarrow\left(3x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(3x+1-3\right)\left(3x+1+3\right)=0\Leftrightarrow\left(3x-2\right)\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\3x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{4}{3}\end{cases}}\)
10,\(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}x=-1\)
11,\(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
12,\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-4x^2+25=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7-5-2x\right)=0\Leftrightarrow\left(5-2x\right).2=0\Leftrightarrow5-2x=0\Leftrightarrow x=\frac{5}{2}\)
13,\(x\left(2x-1\right)+\frac{1}{3}.\frac{2}{3}x=0\Leftrightarrow x\left(2x-1\right)+\frac{2}{9}x=0\)
\(\Leftrightarrow x\left(2x-1+\frac{2}{9}\right)=0\Leftrightarrow x\left(2x-\frac{7}{9}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{7}{9}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{18}\end{cases}}\)
14,\(4\left(2x+7\right)-9\left(x+3\right)^2=0\Leftrightarrow8x+28-9x^2-54x-81=0\)
\(\Leftrightarrow-9x^2+\left(8x-54x\right)+\left(28-81\right)=0\Leftrightarrow-9x^2-46x-53=0\)
\(\Leftrightarrow9x^2+46x+53=0\)Ta có : \(\Delta'=\frac{2116}{4}-477=529-477=52\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-23+\sqrt{52}}{9}\\x=\frac{-23-\sqrt{52}}{9}\end{cases}}\)