Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{2022\times 2023-3}{2023\times 2021+2020}=\frac{2023\times (2021+1)-3}{2023\times 2021+2020}
\\
=\frac{2023\times 2021+2023-3}{2023\times 2021+2020}=\frac{2023\times 2021+2020}{2023\times 2021+2020}=1\)
Nhỏ hơn
Ta có 2020/2021 <1
2021/2022 <1
2022/2023 <1
2023/2024 <1
Suy ra A=(2021/2021+2021/2022 +2022/2023 +2023/2024) < (1+1+1+1)= 4
Vậy A <4
Chúc bạn học tốt
\(\dfrac{2020}{2021}< 1\)
\(\dfrac{2021}{2022}< 1\)
\(\dfrac{2021}{2022}< 1\)
\(\dfrac{2023}{2024}< 1\)
Do đó: A<4
2017/2020<2019/2020< 1
1< 2022/2021< 2023/2021
vậy phân số lớn nhất là 2023/2021
ta so sánh với 1:
2017/2020<2019/2020< 1
1< 2022/2021< 2023/2021
nên phân số lớn nhất là phân số cuối: 2023/2021
\(=2021\cdot2\cdot\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)=4042\cdot\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)=0\)
Ta có:
\(A=\frac{2021^{2021}+1}{2021^{2022}+1}\Leftrightarrow10A=\frac{2021^{2022}+10}{2021^{2022}+1}=1+\frac{9}{2021^{2022}+1}\)
\(B=\frac{2021^{2022}-1}{2021^{2023}-1}\Leftrightarrow10B=\frac{2021^{2023}-10}{2021^{2023}-1}=1-\frac{9}{2021^{2023}-1}\)
Hay ta đang so sánh: \(\frac{9}{2021^{2022}};\frac{9}{2021^{2023}}\)
Mà \(\frac{9}{2021^{2022}}>\frac{9}{2021^{2023}}\)nên \(\frac{2021^{2021}+1}{2021^{2022}+1}>\frac{2021^{2022}-1}{2021^{2023}-1}\)hay\(A>B\)
Vậy \(A>B\)
\(\dfrac{2022}{2021}=\dfrac{2022}{2021}-1=\dfrac{1}{2021}< \dfrac{2021}{2020}-1=\dfrac{1}{2020}=\dfrac{2021}{2020}\)
\(=>\dfrac{2022}{2021}< \dfrac{2021}{2020}\)
2021 x 2021 - 2019 x 2023
= (2019 +2) x ( 2023 -2) - 2019 x 2023
= 2019 x 2023 - 2 x 2019 + 2 x 2023 - 4 - 2019 x 2023
= ( 2019 x 2023 - 2019 x 2023) + 2 x ( 2023 - 2019) - 4
= 0 + 2 x 4 - 4
= 8 - 4
= 4
2021 x 2021 - 2019 x 2023
= (2019 +2) x ( 2023 -2) - 2019 x 2023
= 2019 x 2023 - 2 x 2019 + 2 x 2023 - 4 - 2019 x 2023
= ( 2019 x 2023 - 2019 x 2023) + 2 x ( 2023 - 2019) - 4
= 0 + 2 x 4 - 4
= 8 - 4
= 4
yynbjkgyg
x= 2002/3000ko bt đúng ko mong bn nhắc nhở