Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có :
\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)
\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)
\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)
\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)
\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)
Mà :
\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)
\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)
Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế )
\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 )
\(\Rightarrow\)\(A>3\) ( điều phải chứng minh )
Vậy \(A>3\)
Chúc đệ học tốt ~
c,
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)
vì \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.............................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow C< \frac{1}{100}\)
bt lm mỗi một câu :v
,mình sửa lại đề:
\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)
xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015
=\(\frac{2013}{2013}\)
=\(1\)
vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
Bài 1:
d)
= \(\frac{-5}{9}\left(\frac{6}{13}+\frac{7}{13}\right)+\frac{5}{23}.\frac{7}{9}\)
= \(\frac{-5}{9}.1+\frac{35}{207}\)
= \(\frac{-80}{207}\)
Bài 2:
a) 20%x + 0,4x = 4,5
x( 20% + 0,4 ) = 4,5
x. 0,6 = 4,5
x = 4,5 : 0,6
x = 7,5
Bài 1:
a) \(-\frac{4}{5}-\frac{8}{25}\left(\frac{-5}{2}-0,125\right)\\ =-\frac{4}{5}-\frac{8}{25}\left(\frac{-5}{2}-\frac{1}{8}\right)\\ =-\frac{4}{5}-\frac{8}{25}\left(\frac{-20}{8}-\frac{1}{8}\right)\\ =-\frac{4}{5}-\frac{8}{25}\cdot\frac{-21}{8}\\ =-\frac{4}{5}-\frac{-21}{25}\\ =\frac{-4}{5}+\frac{21}{25}\\ =\frac{-20}{25}+\frac{21}{25}=\frac{1}{25}\)
c) \(5\frac{1}{2}-4\frac{2}{3}:\frac{16}{9}-3\frac{1}{3}:\frac{16}{9}\\ =5\frac{1}{2}-\left(4\frac{2}{3}:\frac{16}{9}+3\frac{1}{3}:\frac{16}{9}\right)\\ =5\frac{1}{2}-\left(4\frac{2}{3}+3\frac{1}{3}\right):\frac{16}{9}\\ =5\frac{1}{2}-8\cdot\frac{9}{16}\\ =\frac{11}{2}-\frac{9}{2}=\frac{2}{2}=1\)
Bài 2:
a) \(\left(20\%x+\frac{2}{5}x-2\right):\frac{1}{3}=-2013\\ \left(\frac{1}{5}x+\frac{2}{5}x-2\right)\cdot3=-2013\\ \left[x\left(\frac{1}{5}+\frac{2}{5}\right)-2\right]=\left(-2013\right):3\\ x\cdot\frac{3}{5}-2=-671\\ x\cdot\frac{3}{5}=-671+2\\ x\cdot\frac{3}{5}=-669\\ x=\left(-669\right):\frac{3}{5}\\ x=\left(-669\right)\cdot\frac{5}{3}\\ x=-1115\)Vậy x = -1115
b) \(\left(4,5-2\left|x\right|\right)\cdot1\frac{4}{7}=\frac{11}{14}\\ \left(\frac{9}{2}-2\left|x\right|\right)\cdot\frac{11}{7}=\frac{11}{14}\\ \frac{9}{2}-2\left|x\right|=\frac{11}{14}:\frac{11}{7}\\ \frac{9}{2}-2\left|x\right|=\frac{11}{14}\cdot\frac{7}{11}\\ \frac{9}{2}-2\left|x\right|=\frac{1}{2}\\ 2\left|x\right|=\frac{9}{2}-\frac{1}{2}\\ 2\left|x\right|=4\\ \left|x\right|=4:2\\ \left|x\right|=2\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)Vậy x ∈ {2 ; -2}
a)\(x\times\left(-2\right)-9\div\left(-3\right)=\left(2-7\right)^2\)
\(x\times\left(-2\right)-\left(-3\right)=\left(-5\right)^2\)
\(x\times\left(-2\right)-\left(-3\right)=25\)
\(x\times\left(-2\right)=25+\left(-3\right)\)
\(x\times\left(-2\right)=22\)
\(x=22:\left(-2\right)\)
\(x=\left(-11\right)\)
Vậy : x = ( -11 )
b) ( - 1) . ( -2 ) . (-3 ) ..... ( -2014)
Dãy số trên có tất cả ( 2014 - 1 ) : 1 + 1 = 2014 số hạng
=> a là 1 số nguyên dương
=> a > 0 là đúng < vì số nguyên dương lớn hơn 0 và tích trên không thể bằng không >
c) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{2013^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
....................
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2013}\)
\(\Rightarrow A< \frac{3}{4}-\frac{1}{2013}< \frac{3}{4}\)
Vậy : \(A< \frac{3}{4}\)
cảm ơn mọi người nhiều ạ