Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
huhuhu, mik phải đi học ngay rồi, làm ơn ai giúp mik đi
7(x-9)-5(6-x)=-6+11x
7x-63-30-5x=-6+11x
(7x-5x)-(63+30)=-6+11x
\(\Rightarrow\)2x-93=-6+11x
\(\Rightarrow\)6+93=11x-2x
99=9x
\(\Rightarrow\)x=99:9
x=11
a) \(A=\left(x-1\right)^2+\left|2y+2\right|-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|2y+2\right|\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left|2y+2\right|\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left|2y+2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-1\right)^2+\left|2y+2\right|-3\) là -3 khi x=1 và y=-1
b) \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\)
Ta có: \(\left(x+5\right)^2\ge0\forall x\)
\(\left(2y-6\right)^2\ge0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-6\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\2y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\) là 1 khi x=-5 và y=3
y=65536
x=162