Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\dfrac{9x}{4}\)=\(\dfrac{16}{x}\)
9x\(^2\)=4*16=69
=>x\(^2\)=69/9=\(\dfrac{64}{9}\)
=>x=\(\dfrac{-8}{3}\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
a) x là số hữu tỉ dương.
\(x=\dfrac{12}{b-15}>0\)
\(\Rightarrow b-15>0\)
\(\Rightarrow b>15\)
b) x là số hữu tỉ âm
\(x=\dfrac{12}{b-15}< 0\)
\(\Rightarrow b-15< 0\)
\(\Rightarrow b< 15\)
c) x là số nguyên
\(x=\dfrac{12}{b-15}\in Z\)
\(\Rightarrow12⋮b-15\)
\(\Rightarrow b-15\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Thay từng trường hợp vào sau đó tìm b bạn nhá!
\(=-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
=-9/10
Vì \(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) nên:
\(f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)
\(f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000\)
\(f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000\)
Vậy \(f\left(32\right)=100000\)
a) \(\left(x-3\right)\left(x-2\right)< 0\)
Ta có : \(x-2>x-3\)
\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy \(2< x< 3\)
b) \(3x+x^2=0\)
\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0\right\}\)
2. GTLN
có A= x - |x|
Xét x >= 0 thì A= x - x = 0 (1)
Xét x < 0 thì A=x - (-x) = 2x < 0 (2)
Từ (1) và (2) => A =< 0
Vậy GTLN của A bằng 0 khi x >= 0
Bài1:
\(C=x^2+3\text{|}y-2\text{|}-1\)
Với mọi x;ythì \(x^2>=0;3\text{|}y-2\text{|}>=0\)
=>\(x^2+3\text{|}y-2\text{|}>=0\)
Hay C>=0 với mọi x;y
Để C=0 thì \(x^2=0\) và \(\text{|}y-2\text{|}=0\)
=>\(x=0vày-2=0\)
=>\(x=0và.y=2\)
Vậy....
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^4-\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)