K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Ta có : \(\frac{1}{100^2}< \frac{1}{99.100}\)

            \(\frac{1}{101^2}< \frac{1}{100.101}\)

            \(\frac{1}{102^2}< \frac{1}{101.102}\)

             ...

           \(\frac{1}{198^2}< \frac{1}{197.198}\)

           \(\frac{1}{199^2}< \frac{1}{198.199}\)

\(\Rightarrow G< \frac{1}{99.100}+\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{197.198}+\frac{1}{198.199}\)

\(\Rightarrow G< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{198}-\frac{1}{199}\)

\(\Rightarrow G< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)(1)

Ta có : \(\frac{1}{100^2}>\frac{1}{100.101}\)

            \(\frac{1}{101^2}>\frac{1}{101.102}\)

            \(\frac{1}{102^2}>\frac{1}{102.103}\)

             ...

            \(\frac{1}{199^2}>\frac{1}{199.200}\)

\(\Rightarrow G>\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{199.200}\)

\(\Rightarrow G>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{199}-\frac{1}{200}\)

\(\Rightarrow G>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)(2)

Từ (1) và (2)

\(\Rightarrow\frac{1}{200}< G< \frac{1}{99}\)

Vậy \(\frac{1}{200}< G< \frac{1}{99}\).

1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199

\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/199< 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)

1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200

\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/199 > 1/200

6 tháng 3 2016

cái này dễ lắm chỉ là chưa để ý thôi:

a,1/101>1/102>...>1/199>1/200

=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1

các phần khác làm tương tự

đánh mỏi tay quá duyệt luôn đi

16 tháng 3 2019

cái này ở trong học tốt toán 6 đúng không

25 tháng 5 2015

viết có chắc chữ giải mà cũng đúng thật vô lý

19 tháng 5 2015

\(=101+102+...+200\)\(\frac{\left(200-101+1\right)}{2}\times\left(101+200\right)=15050\)

26 tháng 2 2020

Tìm x

a) (x+3)/200 + (x+4)/199 + (x+5)/198= -3

b) (x+4)/2000+ (x+6)/999+(x+8)/499+7=0

c) |x-4| - |2x-1|=6

25 tháng 12 2020

cho mi sửa lại:

\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)

9 tháng 3 2021

dấu 8 là nhân còn dấu ^ là mũ ạ