Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
a) 2x = 16 e) 12x = 144
2x = 24 12x = 122
=> x = 4 => x = 2
b) 2x+1 = 16 các câu còn lại tương tự nhé nhiều quá
2x+1 = 24
x + 1 = 4
=> x = 3
c) 5x+1 = 125
5x+1 = 53
x + 1 = 3
=> x = 2
d) 52x - 1 = 125
52x-1 = 53
2x - 1 = 3
2x = 4
=> x = 2
a)Ta có : 2x = 16
2x = 24
=> x = 4
b) Ta có: 2x+1 = 16
2x+1 = 24
=> x+1 = 4
=> x = 4-1
=> x = 3
Mấy câu sau tương tự vậy đó để hôm khác mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá hihi ! ^-^
Học tốt nha bạn !
a)\(\left(x+1\right)^3=64\)
\(\left(x+1\right)^3=4^3\)
\(\Rightarrow x+1=4\)
\(x=4-1\)
\(x=3\)
b)\(\left(2x+1\right)^3=27\)
\(\left(2x+1\right)^3=3^3\)
\(\Rightarrow2x+1=3\)
\(2x=3-1\)
\(2x=2\)
\(x=2:2\)
\(x=1\)
c)\(\left(2x-1\right)^3=125\)
\(\left(2x-1\right)^3=5^3\)
\(\Rightarrow2x-1=5\)
\(2x=5+1\)
\(2x=6\)
\(x=6:2\)
\(x=3\)
a) 3x = 27 (Áp dụng: ax = an (a > 1) => x = n)
3x = 33
x = 3
Vậy x bằng 3
b) 52x = 125 (Áp dụng: ax = an (a > 1) => x = n)
52x = 53
2x = 3
x = 3 : 2
x = 3/2
Vậy x bằng 3/2
c) 4x . 42 = 64
4x . 16 = 43
4x = 43 : 16
4x = 4
x = 1
Vậy x bằng 1
d) 32x : 3 =27
32x : 3 = 33
32x = 33 : 3
32x = 9
32x = 32
2x = 2
x = 1
Vậy x bằng 1
* P/s: Sai cho mình xin lỗi ạ *
Học tốt ~~
\(4^8.2^{20}=2^{16}.2^{20}=2^{36}\)
\(9^{12}.27^5.81^4=3^{24}.3^{15}.3^{16}=3^{55}\)
mk chỉnh đề
\(64^3.4^5.16^2=4^9.4^5.4^4=4^{18}\)
\(25^{20}.125^4=5^{40}.5^{12}=5^{52}\)
\(x^7.x^4.x^3=x^{14}\)
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
\(\left(x+1\right)^3=27\)
\(\left(x+1\right)^3=3^3\)
\(\Rightarrow x+1=3\)
\(x=2\)
\(\left(x+1\right)^3=27\)
\(< =>\left(x+1\right)^3=3.3.3=3^3\)
\(< =>x+1=3< =>x=3-1=2\)
\(\left(2x+3\right)^3=9.81\)
\(< =>\left(2x+3\right)^3=9.9.9\)
\(< =>\left(2x+3\right)^3=9^3\)
\(< =>2x+3=9< =>2x=6\)
\(< =>x=\frac{6}{2}=3\)
1/ a) \(2.3.12.12.3=2.3.2^2.3.2^2.3.3=2^5.3^4\)
b) \(3.5.27.125=3.5.3^3.5^3=3^4.5^4=\left(3.5\right)^4\)
2/ a) \(\left(27^3\right)^4=27^{3.4}=27^{12}\)
Vậy \(\left(27^3\right)^4=27^{12}\)
b) \(5^{36}=\left(5^6\right)^6\) và \(11^{24}=\left(11^4\right)^6\)
Do đó \(5^6=15625\) và \(11^4=14641\)
Vì 15625>14641 nên\(\left(5^6\right)^6>\left(11^4\right)^6hay5^{36}>11^{24}.\)
3/ a) \(x^3=125=>x=5\)
b) \(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-14\right)^3=1000\)
\(3x-14=10^3\)
\(3x=10^3+14\)
\(3x=1014\)
\(x=\frac{1014}{3}=338\)
c) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(2x-1=3\)
\(2x=3+1\)
\(x=\frac{4}{2}=2\)
d) \(5x+3^4=2^2.7^2\)
\(5x+3^4=\left(2.7\right)^2=14^2\)
\(5x+81=196\)
\(5x=196-81\)
\(5x=115\)
\(x=\frac{115}{5}=23\)
e) \(4^x=1024=>x=5\).
\(\left(x-1\right)^3=27\)
\(\left(x-1\right)^3=3^3\)
\(\Rightarrow x-1=3\)
\(x=3+1\)
\(x=4\)