K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

PT nhận \(x=1\) là nghiệm 

Thay \(x=1\) vào trong PT ta tìm được m:

\(x^2-2mx+2m^2-m-6=0\)

\(\Rightarrow1^2-2\cdot m\cdot1+2m^2-m-6=0\)

\(\Leftrightarrow1-2m+2m^2-m-6=0\)

\(\Leftrightarrow2m^2-3m-5=0\)

\(\Leftrightarrow2m^2+2m-5m-5=0\)

\(\Leftrightarrow2m\left(m+1\right)-5\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(2m-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\2m-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{5}{2}\end{matrix}\right.\)

Vậy PT nhận \(x=1\) là nghiệm khi \(m=-1\) hoặc \(m=\dfrac{5}{2}\)

25 tháng 6 2023

Thay \(x=1\) vào pt \(x^2-2mx+2m^2-m-6=0\)

\(\Rightarrow1^2-2m.1+2m^2-m-6=0\)

\(\Rightarrow-3m+2m^2-5=0\)

\(\Rightarrow2m^2-3m-5=0\)

\(\Delta=b^2-4ac=\left(-3\right)^2-4.2.\left(-5\right)=49>0\)

\(\Rightarrow\) Pt có 2 nghiệm \(m_1,m_2\)

\(\left\{{}\begin{matrix}m_1=\dfrac{3+\sqrt{49}}{2.2}=\dfrac{5}{2}\\m_2=\dfrac{3-\sqrt{49}}{2.2}=-1\end{matrix}\right.\)

Vậy \(m=\dfrac{5}{2},m=-1\) thì pt có 1 nghiệm \(x=1\)

6 tháng 6 2018
https://i.imgur.com/Uhbfb24.jpg
6 tháng 6 2018

mơn

1 tháng 6 2019

b) Để phương trình có nghiệm thì \(\Delta'=\left(-m\right)^2-\left(m-1\right)\ge0\Leftrightarrow m^2-m+1\ge0\)

Điều này hiển nhiên vì \(m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall m\)

Theo đề bài suy ra \(x_1+x_2+2\sqrt{x_1x_2}=4\) (bình phương hai vế của giả thiết)

Chị thay tiếp vô hệ thức Viet và em không chắc.

1 tháng 6 2019

Xét \(\Delta^,=\left(-m\right)^2-\left(m-1\right)\)\(=m^2-m+1\)

          \(=(m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4})+\frac{3}{4}\)\(=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với mọi m

  Theo Vi- ét :\(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=m-1\end{cases}}\)(1)

 Theo bài ra ta có : \(\sqrt{x_1}+\sqrt{x_2}=2\)

                              \(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=4\)\(\Leftrightarrow x_1+2\sqrt{x_1\cdot x_2}+x_2=4\)

                              \(\Leftrightarrow\left(x_1+x_2\right)+2\sqrt{x_1\cdot x_2}=4\)(*)

                           Thay (1) vào (*) ta được :

                                         \(2m+2\sqrt{m-1}=4\)\(\Leftrightarrow2\sqrt{m-1}=4-2m\)

                                        \(\Leftrightarrow\sqrt{m-1}=2-m\)\(\Leftrightarrow\sqrt{m-1}^2=\left(2-m\right)^2\)

                                         \(\Leftrightarrow|m-1|=4-4m+m^2\)

                                         \(\Leftrightarrow\orbr{\begin{cases}m-1=4-4m+m^2\\m-1=-4+4m-m^2\end{cases}}\)

                                          \(\Leftrightarrow\orbr{\begin{cases}m^2-5m+5=0\left(2\right)\\m^2-3m+3=0\left(3\right)\end{cases}}\)

      \(\Delta_{\left(2\right)}=\left(-5\right)^2-4\cdot5=5>0\)

=> Phương trình có 2 nghiệm phân biệt

\(m_1=\frac{5+\sqrt{5}}{2};m_2=\frac{5-\sqrt{5}}{2}\)

\(\Delta_{\left(3\right)}=\left(-3\right)^2-4\cdot3=-3< 0\)

=> phương trình vô nghiệm

   KL : ....

kb vs mk nha

27 tháng 4 2017

để pt có 2 nghiệm đều âm thì denta >=0

S<0

p>0

denta=(-1)2 -4(m2+m-6)>=0 <=>1-4m2 -4m+24>=0

<=>-4m2-4m+25>=0 (tm)

s=1<0 (vô lí)

p=m2 +m-6 >0 m>2(tm)

vậy không có gtrij nào của m đề pt có 2 nghiệm dều âm

NV
25 tháng 2 2020

Ta có: \(a-b+c=1+2m-2m-1=0\)

Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=-1\\x_2=2m+1\end{matrix}\right.\)

Để biểu thức bài toán xác định thì:

\(\left\{{}\begin{matrix}x_1+x_2=2m\ge0\\3+x_1x_2=2-2m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le1\)

\(\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1\)

\(\Leftrightarrow\sqrt{2m}+\sqrt{2-2m}=2m+1\)

\(\Leftrightarrow2m-\sqrt{2m}+1-\sqrt{2-2m}=0\)

\(\Leftrightarrow\frac{4m^2-2m}{2m+\sqrt{2m}}+\frac{2m-1}{1+\sqrt{2-2m}}=0\)

\(\Leftrightarrow\left(2m-1\right)\left(\frac{2m}{2m+\sqrt{2m}}+\frac{1}{1+\sqrt{2-2m}}\right)=0\)

\(\Leftrightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)

NV
3 tháng 7 2020

\(\left|x_1-x_2\right|\le10\)

\(\Leftrightarrow\left(x_1-x_2\right)^2\le100\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le100\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)\le100\)

\(\Leftrightarrow\left(m-1\right)^2\le100\)

\(\Rightarrow-10\le m-1\le10\)

\(\Rightarrow-9\le m\le11\)

3 tháng 7 2020

vâng ạ, e cảm ơn nh ạ

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 2:

Để pt có 2 nghiệm phân biệt thì:

$\Delta=9-4m>0\Leftrightarrow m< \frac{9}{4}$

Áp dụng định lý Viet với 2 nghiệm $x_1,x_2$: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=m\end{matrix}\right.\)

Khi đó:

\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)

\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{(x_1^2+1)(x_2^2+1)}=27\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1^2+x_2^2)+1}=27\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1+x_2)^2-2x_1x_2+1}=27\)

$\Leftrightarrow 9-2m+2+2\sqrt{m^2+9-2m+1}=27$

$\Leftrightarrow \sqrt{m^2-2m+10}=m+8$

\(\Rightarrow \left\{\begin{matrix} m\geq -8\\ m^2-2m+10=(m+8)^2=m^2+16m+64\end{matrix}\right.\)

\(\Rightarrow m=-3\) (thỏa mãn)

Vậy........

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 1:

Ta thấy $\Delta'=m^2-(m^2-2)=2>0$ với mọi $m$ nên PT có 2 nghiệm phân biệt với mọi $m$

Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2\end{matrix}\right.\)

Khi đó:

\(|x_1^3-x_2^3|=10\sqrt{2}\)

\(\Leftrightarrow |x_1-x_2||x_1^2+x_1x_2+x_2^2|=10\sqrt{2}\)

\(\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}.|(x_1+x_2)^2-x_1x_2|=10\sqrt{2}\)

\(\Leftrightarrow \sqrt{4m^2-4(m^2-2)}.|4m^2-(m^2-2)|=10\sqrt{2}\)

\(\Leftrightarrow |3m^2+2|=5\Leftrightarrow 3m^2+2=5\Leftrightarrow m=\pm 1\) (thỏa mãn)

Vậy........

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Ta thấy:

\(\Delta=(m-3)^2+4(2m+1)=m^2+2m+13=(m+1)^2+12>0, \forall m\in\mathbb{R}\)

Do đó PT luôn có 2 nghiệm phân biệt với mọi $m$

Áp đụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=3-m\\ x_1x_2=-2m-1\end{matrix}\right.\)

Khi đó:

\(A=4x_1^2-x_1^2x_2^2+4x_2^2+x_1x_2\)

\(=4(x_1^2+x_2^2+2x_1x_2)-(x_1x_2)^2-7x_1x_2\)

\(=4(x_1+x_2)^2-(x_1x_2)^2-7x_1x_2\)

\(=4(3-m)^2-(-2m-1)^2-7(-2m-1)\)

\(=42-14m\)

Bạn muốn chứng minh biểu thức A thế nào???

28 tháng 5 2019

Đề này bị nhầm đấy cậu ahh