Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+1\ge xy+x+y\)
\(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)(đúng)
Lời giải:
$P=xy(x^4-y^4)-30xy^2$
Khi đó muốn cm $P\vdots 30$ thì ta chỉ cần chỉ ra $xy(x^4-y^4)\vdots 30$ với mọi $x,y$ nguyên.
Nếu $x,y$ cùng tính chẵn lẻ thì $x^4, y^4$ cũng cùng tính chẵn lẻ.
$\Rightarrow x^4-y^4$ chẵn
$\Rightarrow xy(x^4-y^4)\vdots 2$
Nếu $x,y$ khác tính chẵn lẻ, nghĩa là 1 trong 2 số là số chẵn.
$\Rightarrow xy\vdots 2\Rightarrow xy(x^4-y^4)\vdots 2$
Vậy $xy(x^4-y^4)\vdots 2(*)$
--------------------------------------
Mặt khác:
Nếu 1 trong 2 số $x,y\vdots 5$ thì hiển nhiên $xy(x^4-y^4)\vdots 5$
Nếu $x,y$ đều không chia hết cho 5 thì $x^2, y^2$ cũng không chia hết cho $5$.
Mà 1 scp khi chia cho 5 dư $0,1,4$ nên lúc này $x^2, y^2$ chia 5 dư $1$ hoặc $4$
$xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)$.
$x^2, y^2$ mà cùng chia 5 dư $1$ hoặc cùng chia $5$ dư $4$ thì $x^2-y^2\vdots 5\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 5$
$x^2, y^2$ mà chia 5 khác số dư thì 1 số chia 5 dư 1, một số chia 5 dư 4 nên $x^2+y^2\vdots 5$
$\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 5$
Vậy tóm lại $xy(x^4-y^4)\vdots 5(**)$
-----------------
Nếu 1 trong 2 số $x,y$ chia hết cho 3 thì hiển nhiên $xy(x^4-y^4)\vdots 3$
Nếu cả 2 số $x,y$ đều không chia hết cho 3 thì $x^2, y^2$ chia 3 dư 1 (tính chất scp)
$\Rightarrow x^2-y^2\vdots 3$
$\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 3 (***)$
Từ $(*); (**); (***)\Rightarrow xy(x^4-y^4)\vdots (2.3.5)$
Hay $xy(x^4-y^4)\vdots 30$
$\Rightarrow P\vdots 30$
Ta có:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Số dương.
\(\Leftrightarrow x+y\ge2\sqrt{xy}\)(Phải có "=" nữa nhé)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)
Dấu = xra khi x=y.