Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
Bài 1: \(A=x^2-2x+3\)
\(=x^2-2x+1+2\)
\(=\left(x-1\right)^2+2\ge2\forall x\)
Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
Bài 2:
\(2x^2+4x+11=2x^2+4x+2+9\)
\(=2\left(x^2+2x+1\right)+9\)
\(=2\left(x+1\right)^2+9\ge9>0\forall x\)
\(P=\dfrac{x^2+2x-9}{x-3}=x+5+\dfrac{6}{x-3}=x-3+\dfrac{6}{x-3}+8\)
\(\Rightarrow P\ge2\sqrt{\left(x-3\right).\dfrac{6}{\left(x-3\right)}}+8=8+2\sqrt{6}\)
\(\Rightarrow P_{min}=8+2\sqrt{6}\) khi \(\left(x-3\right)^2=6\Rightarrow x=3+\sqrt{6}\)
bạn có thể làm đầy đủ cho mik hiểu đc k
bắt đầu từ dòng thứ 2 mik đã k hiểu r