Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo tại đây: Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến
Đề gốc là \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
\(\frac{P}{4}=\frac{x}{2.2\sqrt{y}}+\frac{y}{2.2\sqrt{z}}+\frac{z}{2.2\sqrt{x}}\)
Áp dụng BĐT Côsi:
\(2.2.\sqrt{x}\le x+2^2=x+4\)
\(\Rightarrow\frac{P}{4}\ge\frac{x}{y+4}+\frac{y}{z+4}+\frac{z}{x+4}=\frac{x^2}{xy+4x}+\frac{y^2}{yz+4y}+\frac{z^2}{zx+4z}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+4\left(x+y+z\right)}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{3}\left(x+y+z\right)^2+4\left(x+y+z\right)}=\frac{3\left(x+y+z\right)}{\left(x+y+z\right)+12}\)
\(=3-\frac{36}{x+y+z+12}\ge3-\frac{36}{12+12}=\frac{3}{2}\)
\(\Rightarrow P\ge6\)
Dấu bằng xảy ra khi \(x=y=z=4\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+y-4}=a>0\\\sqrt{y+z-4}=b>0\\\sqrt{z+x-4}=c>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{a^2+c^2-b^2+4}{2}\\y=\frac{a^2+b^2-c^2+4}{2}\\z=\frac{b^2+c^2-a^2+4}{2}\end{matrix}\right.\)
\(P=\frac{a^2+c^2-b^2+4}{2b}+\frac{a^2+b^2-c^2+4}{2c}+\frac{b^2+c^2-a^2+4}{2a}\)
\(2P=\frac{a^2}{b}+\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}-a-b-c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
Mà \(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)
Tương tự với các số hạng còn lại và cộng lại ra được:
\(2P\ge4a+4b+4c-2a-2b-2c-a-b-c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(2P\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(2P\ge2\sqrt{\frac{4a}{a}}+2\sqrt{\frac{4b}{b}}+2\sqrt{\frac{4c}{c}}=12\)
\(\Rightarrow P\ge6\)
\(\Rightarrow P_{min}=6\) khi \(a=b=c=2\) hay \(x=y=z=4\)
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)
đầu tiên ta chứng minh với x,y,z,t bất kì thì:
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (*)
thật vậy bđt (*) tương đương với:
\(x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge x^2+2xz+z^2+y^2+2yt+t^2\)
\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge xz+yt\)
bđt trên đúng vì theo bđt bunhia cốp xki
\(\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge\sqrt{\left(xz+yt\right)^2}=|xz+yt|\ge xz+yt\)
Áp dụng (*) ta có:
\(P=\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\ge\sqrt{\left(2+2\right)^2+\left(x^2+y^2\right)^2}+\sqrt{4+z^2}\)
\(\ge\sqrt{\left(2+2+2\right)^2+\left(x^2+y^2+z^2\right)^2}=\sqrt{36+\left(x^2+y^2+z^2\right)^2}\)
Ta có:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Rightarrow3x^2+3y^2+3z^2+3\ge2x+2y+2z+2xy+2yz+2zx=2.6=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow P\ge\sqrt{36+3}=3\sqrt{5}\)
Dấu bằng xảy ra khi x=y=z=1