Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+y^2\ge2xy\)
\(\sqrt{x^2+y^2}\ge\sqrt{\frac{\left(x+y\right)^2}{2}}=\frac{\sqrt{2}}{2}\left(x+y\right)\)
Do các vế của BĐT đều dương, nhân vế với vế:
\(\left(x^2+y^2\right)\sqrt{x^2+y^2}\ge\sqrt{2}xy\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
\(a)\)\(x+xy+y=-6\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)
Lập bảng xét TH ra là xong
\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Xin thêm 1 slot đi hok về làm cho -,-
\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel )
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :))
Chúc bạn học tốt ~
\( a)\sqrt {4{x^2} - 4x + 1} = 3\\ \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2}} = 3\\ \Leftrightarrow \left| {2x - 1} \right| = 3\\ T{H_1}:2x - 1 \ge 0 \Rightarrow x \ge \dfrac{1}{2}\\ 2x - 1 = 3\\ \Leftrightarrow 2x = 3 + 1\\ \Leftrightarrow 2x = 4\\ \Leftrightarrow x = \dfrac{4}{2} = 2\left( {TM} \right)\\ T{H_2}:2x - 1 < 0 \Rightarrow x < \dfrac{1}{2}\\ - \left( {2x - 1} \right) = 3\\ \Leftrightarrow - 2x + 1 = 3\\ \Leftrightarrow - 2x = 3 - 1\\ \Leftrightarrow - 2x = 2\\ \Leftrightarrow x = - \dfrac{2}{2} = - 1\left( {TM} \right) \)
Vậy...
1 a) \(\sqrt{4x^2-4x+1}=3\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) Với x > 0 ; y > 0,ta có :
\(\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\right)=\frac{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)
a. áp dụng bđt cối \(\sqrt{c\left(a-c\right)}\le\frac{a}{2}\)
lm tương tự sau đó cô si lần nữa
Ad bđt Bu-nhia-cốp-xki:\(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(c+a-c\right)\)
\(VT=\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)
\(\ge\dfrac{4}{x^2+2xy+y^2}\)
\(=\dfrac{4}{\left(x+y\right)^2}>4\)
Cách khác.
Ta có: \(A=\dfrac{1}{x\left(x+y\right)}+\dfrac{1}{y\left(x+y\right)}=\dfrac{1}{x+y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(=\dfrac{1}{x+y}.\dfrac{x+y}{xy}=\dfrac{1}{xy}\)
Áp dụng BĐT cho các số x,y >0 , ta có:
\(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\)
Và x+y \(\le\)1 \(\Rightarrow xy\le\dfrac{1}{4}\) \(\Rightarrow A\ge\dfrac{1}{\dfrac{1}{4}}=4\)
Dấu ''='' xảy ra khi x = y =0,5
Câu trên trả lời nhiều quá olm . ko cho trả lời nữa tệ thật.
mình ghi chú bên cạnh là đồng nhất hệ số rồi mà.
bản chất nó là phân tích đa thức thành nhân tử
mình thích nhân phân phối ra hơn là tách ghép
(x^2+ax+b)(x^2+cx+d) =(x^4+cx^3+dx^2)+(ax^3+acx^2+adx)+(bx^2+bcx+bd)=x^4+(c+a)x^3+(ac+b+d)x^2+(ad+bd)x+bd --->nhân phân phối bình thường rồi ghép lại theo số mũ của x
=>x^4+(c+a)x^3+(ac+b+d)x^2+(ad+bd)x+bd=x^4-2x^3-13x^2+14x+48
để hai cái này bằng nhau => các hệ số theo số mũ của x tương ứng phải bằng nhau
=>
c+a=-2
ac+b+d=-13
ad+bd=14
bd=48
{ để giải hệ này cũng phải đơn giản, nếu để chuẩn thì không đến nỗi đánh đố nhau nên thường hệ số là số nguyên, qua la so huu ty hồng đến nỗi vô tỷ=>-->
a+c=-2-->a,c=+-1 ;+-2
bd=48=6.8=......=>
sau một vài phép thử tìm ra; các hệ số: a,b,c,d
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(Đúng\right)\)với mọi số dương x,y