K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

11 tháng 12 2016

P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8 

( vì k(k+1) chia hết cho 2 với mọi k thuộc n) 

P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2

. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N

. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N

(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24

26 tháng 3 2017

cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24 
các bạn giải hộ mình vs

1 tháng 5 2016

Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5

Chứng minh p4 – 1   240

- Do p >5 nên p là số lẻ                                                                              

+ Mặt khác: p4 –1  = (p –1) (p + 1) (p2 +1)                                                 

--> (p-1 và (p+1) là hai số chẵn liên tiếp  => (p – 1) (p+1)  8                   

+ Do p là số lẻ nên p2  là số lẻ ->  p2 +1  2                                                 

- p > 5 nên p có dạng:

   + p = 3k +1 --> p – 1 = 3k + 1 – 1  = 3k   3  --> p4 – 1  3 

   + p = 3k + 2 -->  p + 1  = 3k + 2 + 1  = 3k +3  3  -->  p4 – 1  3             

- Mặt khác, p có thể là dạng:

+ P =  5k +1 --> p – 1  = 5k + 1 – 1  = 5k    5   --> p4 – 1    5

+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2  +1  = 25k2  + 20k +5  5 --> p4 – 1  5  

+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1  5

+ p = 5k +4 --> p + 1 = 5k +5  5 --> p4 – 1  5                                            

Vậy p4 – 1  8 . 2. 3 . 5 hay p4 – 1  240

Tương tự ta cũng có q4 – 1  240                                                                   

Vậy: (p4 – 1) – (q4 –1)  = p4 – q4    240

 mk nha các bạn !!!

1 tháng 5 2016

 Edogawa Conan Copy, ko k

22 tháng 12 2015

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

11 tháng 2 2016

.p4q4=p4q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240 và (q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)
vì p là số nguyến tố lớn hơn 5 nên p là số lẻ
⟹(p−1)(p+1) là tích của 2 số lẻ liên tiếp nên chia hết cho 8 (1)
Do p>5 nên:
p=3k+1→p−1=3kp−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)
mặt khác vì p là số lẻ nên p2 là số lẻ →p2+1 là số chẵn nên p2+1 ⋮ 2 (3)
giờ cần chứng minh p4−1 ⋮ 5:
p có thể có dạng:
p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5k mà p là số nguyến tố nên k=1→p=5 (ko thỏa mãn ĐK)
p4−1 ⋮ 5 (4)
từ (1),(2),(3),(4), suy ra p4−1 chia hết cho 2.3.5.8 hay p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240
Kết luận.......................

11 tháng 2 2016

bai toan nay kho qua

17 tháng 2 2021

https://olm.vn/hoi-dap/detail/4762440095.html