\(y=\sin3x;y=\sin x\) bằng nhau ?<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Bài 2. x thỏa mãn yêu cầu bài ra khi và chỉ khi


 

31 tháng 3 2017

Bài 2. x thỏa mãn yêu cầu bài ra khi và chỉ khi



31 tháng 3 2017

Bài 6. Các giá trị cần tìm của x là các nghiệm của phương trình

tan 2x = tan ( - x) ,


Đáp số : ( k ∈ Z, k - 2 không chia hết cho 3).

22 tháng 5 2017

Giá trị của x cần tìm là nghiệm của phương trình:
\(tan\left(\dfrac{\pi}{4}-x\right)=tan2x\)
pt\(\Leftrightarrow\left\{{}\begin{matrix}cos\left(\dfrac{\pi}{4}-x\right)\ne0\\cos2x\ne0\\\dfrac{\pi}{4}-x=2x+k\pi\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}cos2x\ne0\\3x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\).

9 tháng 8 2017

Ta có: sin 3x = sin x

Giải bài 2 trang 28 sgk Đại số 11 | Để học tốt Toán 11

Vậy với Giải bài 2 trang 28 sgk Đại số 11 | Để học tốt Toán 11 thì sin x = sin 3x.

3 tháng 4 2017

Đồ thị hàm số y = sin x trên đoạn [-2π, 2π]

Dựa vào đồ thị hàm số y = sinx

a) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị bằng -1 là:

x=−π2;x=3π2x=−π2;x=3π2

b) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị âm là:

x ∈ (-π, 0) ∪ (π, 2 π)


1 tháng 4 2017

Nhìn đồ thị y = sinx ta thấy trong đoạn [-π ; π] các điểm nằm phía trên trục hoành của đồ thị y = sinx là các điểm có hoành độ thuộc khoảng (0 ; π). Từ đố, tất cả các khoảng giá trị của x để hàm số đó nhận giá trị dương là (0 + k2π ; π + k2π) hay (k2π ; π + k2π) trong đó k là một số nguyên tùy ý.

23 tháng 5 2017

a) Do \(-1\le sinx\le1,\forall x\in R\).
Nên giá trị lớn nhất của \(y=3-4sinx\) bằng \(3-4.\left(-1\right)=7\)khi \(sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=3-4sinx\) bằng \(3-4.1=-1\) đạt được khi \(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\).

23 tháng 5 2017

b) \(y=2-\sqrt{cosx}\) xác định khi \(0\le cosx\le1\) .
Giá trị lớn nhất của \(y=2-\sqrt{cosx}=2-\sqrt{0}=2\) khi \(cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=2-\sqrt{cosx}=2-\sqrt{1}=1\) khi \(cosx=1\Leftrightarrow x=k2\pi\).

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

31 tháng 3 2017

a) với mọi x thuộc tập xác định của hàm số đã cho ta có

0 ≤ cosx ≤ 1 => y = 2√cosx + 1 ≤ 3.

Giá trị y = 3 đạt được khi cosx = 1 ⇔ x = k2π, k ∈ Z, do đó max y = 3.

b) ta có -1 ≤ sinx ≤ 1, ∀x => 2 ≥ -2sinx ≥ -2 => 1 ≤ y = 3 – 2sinx ≤ 5, ∀x .

Giá trị y = 5 đạt được khi sinx = -1 ⇔ x = −π2+k2π−π2+k2π . k ∈ Z.

Giá trị y = 1 đạt được khi sinx = 1 ⇔ x = π2+k2ππ2+k2π, k ∈ Z.

Vậy max y = 5 ; min y = 1.