Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm ssoo đã cho là hàm số bậc nhất thì
a | \(\frac{m}{2}\ne0\Leftrightarrow m\ne0\) |
b | \(3m+1\ne0\Leftrightarrow m\ne-\frac{1}{3}\) |
c | \(\hept{\begin{cases}\sqrt{5-m}\ne0\\5-m\ge0\end{cases}\Leftrightarrow m< 5}\) |
a) Ta có : \(y=\sqrt{2-m}\left(x+1\right)\)
\(=x\sqrt{2-m}+\sqrt{2-m}\)
Để \(y\) là hàm số bậc nhất \(\Leftrightarrow\sqrt{2-m}\ne0\)
\(\Leftrightarrow m\ne4\)
b) Ta có : \(y=\frac{\sqrt{m-5}}{\sqrt{m+5}}x+\sqrt{2}\)
Để \(y\) là hàm số bậc nhất \(\Leftrightarrow\frac{\sqrt{m-5}}{\sqrt{m+5}}\ne0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{m-5}{m+5}\ne0\\m\ne-5\end{cases}}\) \(\Leftrightarrow m\ne\pm5\)
Lời giải:
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1, do đó hàm số đồng biến khi hệ số của x dương. Vậy m – 1 > 0 hay m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5, do đó hàm số nghịch biến khi hệ số của x âm.
Vậy 5 – k < 0 hay 5 < k thì hàm số nghịch biến.
a) Hàm số bậc nhất y = (m – 1)x +3 đồng biến
⇔ m -1 > 0
⇔ m > 1
Vậy: Với m > 1 thì hàm số đồng biến
b)
Hàm số bậc nhất y = (5 – k)x+1 nghịch biến
⇔ 5 – k < 0
⇔ k > 5
Vậy: Với k > 5 thì hàm số nghịch biến
a) Vì \(\frac{1}{\sqrt{m-1}}\) > 0 với mọi m > 1 nên \(\frac{1}{\sqrt{m-1}}+1\ne0\) với mọi m > 1
=> Với m > 1 thì Hàm số đã cho là hàm số bậc nhất
b) \(y=-\frac{m^2-2}{m+1}x+\frac{5\left(m^2-2\right)}{m+1}\)
Để hàm số đã cho là hàm bậc nhất <=> \(\frac{m^2-2}{m+1}\ne0\) <=> \(m^2-2\ne0;m+1\ne0\)
<=> \(m\ne\sqrt{2};-\sqrt{2};-1\)
Vậy với \(m\ne\sqrt{2};-\sqrt{2};-1\) thì hs đã cho là hs bậc nhất
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)
a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)
b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)
Bài 2 :
Để hàm số đồng biến thì hệ số \(a>0\)
Để hàm số nghịch biến thì hệ số \(a< 0\)
Gợi ý z tư làm nha
Muốn cho một hàm số là hàm số bậc nhất thì nó phải có dạng y = ax + b, với a \(\ne\) 0. Do đó:
a) Điều kiện là: \(\sqrt{5-m}\ne0\) hay 5 - m > 0. Suy ra m < 5.
b) Điều kiện là: \(\dfrac{m+1}{m-1}\ne0\) hay m + 1 \(\ne\)0, m - 1 \(\ne\)0. Suy ra m \(\ne\pm1\)
a) Để hàm số y= \(\sqrt{5-m}\) (x-1) là bậc nhất:
ta có: a\(\ne\) 0 \(\Rightarrow\) \(\sqrt{5-m}\) \(\ne\) 0 \(\Rightarrow\) 5 - m > 0 \(\Rightarrow\) m < 5.
Vậy : m<5 thì hàm số y= \(\sqrt{5-m}\)(x - 1) là bấc nhất.
b) Để hàm số \(y=\dfrac{m+1}{m-1}x+3,5\) là bậc nhất:
ta có : a\(\ne0\) \(\Rightarrow\) \(\dfrac{m+1}{m-1}\ne0\Rightarrow\) m+1 \(\ne0,m-1\ne0\Rightarrow m\ne\pm1\)
Vậy: \(m\ne\pm1\) thì hàm số \(y=\dfrac{m+1}{m-1}x+3,5\) là bậc nhất.