Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn cho một hàm số là hàm số bậc nhất thì nó phải có dạng y = ax + b, với a \(\ne\) 0. Do đó:
a) Điều kiện là: \(\sqrt{5-m}\ne0\) hay 5 - m > 0. Suy ra m < 5.
b) Điều kiện là: \(\dfrac{m+1}{m-1}\ne0\) hay m + 1 \(\ne\)0, m - 1 \(\ne\)0. Suy ra m \(\ne\pm1\)
a) Để hàm số y= \(\sqrt{5-m}\) (x-1) là bậc nhất:
ta có: a\(\ne\) 0 \(\Rightarrow\) \(\sqrt{5-m}\) \(\ne\) 0 \(\Rightarrow\) 5 - m > 0 \(\Rightarrow\) m < 5.
Vậy : m<5 thì hàm số y= \(\sqrt{5-m}\)(x - 1) là bấc nhất.
b) Để hàm số \(y=\dfrac{m+1}{m-1}x+3,5\) là bậc nhất:
ta có : a\(\ne0\) \(\Rightarrow\) \(\dfrac{m+1}{m-1}\ne0\Rightarrow\) m+1 \(\ne0,m-1\ne0\Rightarrow m\ne\pm1\)
Vậy: \(m\ne\pm1\) thì hàm số \(y=\dfrac{m+1}{m-1}x+3,5\) là bậc nhất.
a, \(\left\{{}\begin{matrix}m\ge0\\\sqrt{m}\ne\sqrt{5}\Leftrightarrow m\ne5\end{matrix}\right.\)
b, Để là hàm số đồng biến thì:\(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}>0\Rightarrow\sqrt{m}+\sqrt{5}>0\Leftrightarrow m>5\)
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)
a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)
b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)
Bài 2 :
Để hàm số đồng biến thì hệ số \(a>0\)
Để hàm số nghịch biến thì hệ số \(a< 0\)
Gợi ý z tư làm nha
a, Để hàm số trên là hàm bậc nhất : \(3m-2\ne0\Leftrightarrow m\ne\frac{2}{3}\)
b, Để hàm số trên là hàm bậc nhất : \(\sqrt{3-m}\ne0\Leftrightarrow3-m\ne0\Leftrightarrow m\ne3\)
c, Để hàm số trên là hàm bậc nhất : \(m+2\ne0;\frac{2m-1}{m+2}\ne0\Leftrightarrow m\ne-2;m\ne\frac{1}{2}\)
d, loại vì hàm bậc 2