Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử n^2+2008 là 1 số chính phương
suy ra n^2+2008=a^2(a>0)
a^2-n^2=2008
(a-n)(a+n)=2008
thấy a+n>a-n
suy ra a+n)(a-n)= mấy nhân mấy đó (mik chưa tính)
thay vào tìm đc n
nhưng n không là stn
nên n^2+2008 ko là số chính phương vơi n là stn
Đặt \(n^2+2018=m^2\)
Ta có một số chính phương chia cho 4 dư 0 hoặc 1
\(n^2+2018=m^2\)=>\(m^2-n^2=2018\)
xét số dư của \(m^2-n^2\)cho 4
ta có bảng
\(m^2\) 0 1 1 0
\(n^2\) 0 1 0 1
\(m^2-n^2\) 0 0 1 -1
mà \(2018\equiv2\left(mod4\right)\)
mà một số cp chia co 4 dư o hoặc 1
vậy o tìm đc số thoả mãn
T I C K nha!
Ta có: \(A=n^2+4n+3\)
\(A=n^2+n+3n+3\)
\(A=\left(n^2+n\right)+\left(3n+3\right)\)
\(A=n\left(n+1\right)+3\left(n+1\right)\)
\(A=\left(n+1\right)\left(n+3\right)\)
Vì A là tích của hai số chẵn hoặc hai số lẻ liên tiếp
Vậy A không phải là số chính phương
(n+1)2 <A<(n+2)2
Do giữa 2 số a2 và (a+1)2 không có số chính phương nào
Nên A không phải số chính phương
Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)
cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng
\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
phân tích 10^2n = (10^n)^2
10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được
\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)
=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{3^2}\)
=\(\left(\frac{10^n+8}{3}\right)^2\)
vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương
Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)
\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)
mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)
Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương
giả sư tồn tại n sao cho n2+2002 là số chính phương
Đặt n2+2002=m2 (m thuộc N )
=> m2-n2 = 2002 => (m+n)(m-n) = 2002 (bất đẳng thức)
vì m-n+m+n = 2m là một số chẵn; mặt khác 2002 chia hết cho 2
=> (m+n)(m-n) chia hết cho 4 mà 2002 không chia hết cho 4 nên không tồn tại n sao cho n2+2002 là số chính phương.
ể n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
Gia sử A= \(n^2+2006\)là số chính phương
=> \(n^2+2006=k^2\)
=>\(k^2-n^2=2006\)=> (k+n)(k-n)=2006
mà (k+n)-(k-n)=2n\(⋮\)2=>k+n; k-n cùng tính chẳn,lẻ
Th1: nếu k+n và k-n là số chẵn => k+n\(⋮\)2
k-n \(⋮\)2
=>(k+n)(k-n)\(⋮\)4 mà 2006 ko chia hết cho 4-> vô lí
Th2: nếu k+n và k-n là số lẻ =>(k+n)(k-n)là số lẻ=> (k+n)(k-n)=2006->vô lí
=> ko có gt n để \(n^2+2006\)là số chính phương
Tức là \(n^2+2006\)ko phải là số chính phương
Một số chính phương chia 4 dư 0 hoặc 1
Đặt \(n^2+2006=a^2\left(a\in N\right)\)
+, Nếu n^2 chia hết cho 4 thì a^2 chia 4 dư 2 (vô lí)
+, Nếu n^2 chia 4 dư 1 thì a^2 chia 4 dư 3 (vô lí)
Vậy với mọi n là số tự nhiên thì n mũ 2 cộng 2006 không phải số chính phương