Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu mm chẵn ⇒m=2k⇒m=2k
⇒A=(2k+2n+1)(6k−2n−2)=2.(2k+2n+1)(3k−n−1)⇒A=(2k+2n+1)(6k−2n−2)=2.(2k+2n+1)(3k−n−1)
⇒A⇒A là tích của 2 và 1 số tự nhiên ⇒A⇒A là một số chẵn
- Nếu mm lẻ ⇒m=2k+1⇒m=2k+1
⇒A=(2k+1+2n+1)(6k+3−2n+2)=2(k+n+1)(6k−2n+5)⇒A=(2k+1+2n+1)(6k+3−2n+2)=2(k+n+1)(6k−2n+5)
⇒A⇒A là tích của 2 và 1 số tự nhiên ⇒A⇒Acũng là một số chẵn
Vậy AA luôn chẵn với mọi m, n tự nhiên
Ta có : 2n là số chẵn
=> (-1)2n = 1
2n + 1 là số lẻ
=> (-1)2n+1 = -1
=> 1 + -1 = 0
Muốn hiểu lý do tại sao thì chat với mình nhé! Mình sẽ giải thích cho.
Ta có: 2.n^2-n+2 chia hết cho 2n+1
=> n.(2n+1)-n-n+2 chia hết cho 2n+1
=> n.(2n+1) - ( 2n-2) chia hết cho 2n+1
=> n.(2n+1) - (2n+1) -3 chia hết cho 2n +1
Vì n.(2n+1) - (2n+1) chia hết cho 2n+1
=> 3 chia hết cho 2n+1
=> 2n+1 thuộc Ư (3)= 1,3
Ta có bảng:
2n+1 | n |
3 | 1 |
1 | 0 |
Vậy n =0;1
Ta có: 2.n^2-n+2 chia hết cho 2n+1
=> n.(2n+1)-n-n+2 chia hết cho 2n+1
=> n.(2n+1) - ( 2n-2) chia hết cho 2n+1
=> n.(2n+1) - (2n+1) -3 chia hết cho 2n +1
Vì n.(2n+1) - (2n+1) chia hết cho 2n+1
=> 3 chia hết cho 2n+1
=> 2n+1 thuộc Ư (3)= 1,3
Ta có bảng:
2n+1 | n |
3 | 1 |
1 | 0 |
Vậy n =0;1
\(\Rightarrow2^{3n-n}=16=2^4\Rightarrow2n=4\Rightarrow n=2\)
(-1)^2n +(-1)^2n+1
=1+(-1)=0
tick nhé
tick cho minh với minh mới dk 0 điểm