K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

Ta có:

n2 là số chính phương

Mà n khác 0

\(\Rightarrow\)Có 2 trường hợp:

TH1: n là số chẵn

Ví dụ: n = 2

\(\Rightarrow n^2+n+1=2^2+2+1=4+2+1=7\)

Mà 7 không có số nào mũ 2 bằng

\(\Rightarrow n^2+n+1\)là số lẻ và \(n^2+n+1\)không thể là số chính phương

TH2:

n là số lẻ

Ví dụ: n = 3

\(\Rightarrow n^2+n+1=3^2+3+1=9+3+1=13\)

Mà 13 không có số nào mũ 2 bằng cả

\(\Rightarrow n^2+n+1\)là số lẻ và không thể là số chính phương

Qua 2 trường hợp trên, ta kết luận: với n là số tự nhiên khác 0 thì \(n^2+n+1\)là số lẻ và không thể là số chính phương

\(A=n^2+n+1=n\left(n+1\right)+1\)

Vì n;n+1 là hai só liên tiếp

nên n(n+1) chia hết cho 2

=>A=n(n+1)+1 chia 2 dư 1

=>A là số lẻ

3 tháng 6 2018

b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1

cho b=a+1

\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)

\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)

\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)

\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)

vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)

4 tháng 6 2018

Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k!  ^_^  *_*

20 tháng 9 2016

Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)

\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)

Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:

Với \(n=4k\left(2k\right)!\) thì:

\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)

\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)

\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.

20 tháng 9 2016

Viết rõ đề ra đc không?

25 tháng 8 2015

3. a) Coi A = ab+1
A = 111...11(n chữ số 1) .10+ 5 .111...11(n chữ số 1) + 1
 \(A= \frac {10^n - 1} {9} + 5 \frac { 10^n -1} {9}+1 \)

\(A= \frac {10^2n - 10^n + 5.10^n -5 + 9} {9}\)

\(A =\frac {10^{2n} + 4.10^n + 4} {9}\)

\(A =\frac {(10^n + 2)^2} {3^2}\)

\(A=(\frac{10^n+2} {3}) ^2\)
Vậy A là số chính phương (vì 10n+2 chia hết cho 3)

 

b)Ta thấy 16 = 1.15 + 1
               1156 = 11.105 + 1
               111556 = 111.1005 + 1
...            111...1555...56(n chữ số 1,n-1 chữ số 5) = 111...1(n chữ số 1).100...05(n-1 chữ số 0) +1 (phần a)
               Vẫy các số hạng trong dãy trên đều là số chính phương

11 tháng 7 2015

3a)(dấu * là nhân nhé)

Có ab+1

=11...1*100...05+1

=11...1*(33...35(n-1 chữ số 3)*3)+1

=33...3*33...35+1

=33...3*(33...34+1)+1

=33...3*33...34+(33...3+1)

=33...3*33...34+33...34(n-1 chữ số 3)

=33...34*(33...3+1)

=33...34*33...34(n-1 chữ số 3)

=(33...34)^2 là số chính phương

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.

9 tháng 2 2021

Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ

Khi đó \(2^n-1=\left(2k+1\right)^2\)  \(\left(k\inℕ^∗\right)\)

\(\Leftrightarrow2^n-1=4k^2+4k+1\)

\(\Leftrightarrow2^n=4k^2+4k+2\) 

Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4

Mà n>1 nên 2n chia hết cho 4

=> vô lý =>  điều g/s sai

=> 2n - 1 không là 1 SCP