Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức cần chứng minh tương đương với \(n>\left(1+\frac{1}{n}\right)^n.\)
Ta chứng minh bằng quy nạp theo n. Với \(n=3\): ta có vế trái bằng \(3^4=81\), vế phải \(4^3=64\). Vậy bất đẳng thức đúng với \(n=3\).
Giả sử đúng đến \(n\), tức là ta đã có \(n>\left(1+\frac{1}{n}\right)^n.\) Khi đó
\(\left(1+\frac{1}{n+1}\right)^{n+1}<\left(1+\frac{1}{n}\right)^{n+1}=\left(1+\frac{1}{n}\right)\cdot\left(1+\frac{1}{n}\right)^n<\left(1+\frac{1}{n}\right)\cdot n=n+1.\)
Do đó mệnh đề đúng với n+1.
Theo nguyên lý quy nạp đúng với mọi n.
Lời giải:
Ta thấy \((2n+1)^2=4n^2+4n+1> 4n^2+4n\)
\(\Leftrightarrow (2n+1)^2> 2n(2n+2)\) \(\Leftrightarrow \frac{1}{(2n+1)^2}\leq \frac{1}{2n(2n+2)}\)
Do đó:
\(\left\{\begin{matrix} \frac{1}{3^2}< \frac{1}{2.4}\\ \frac{1}{5^2}< \frac{1}{4.6}\\ .......\\ \frac{1}{(2n+1)^2}< \frac{1}{2n(2n+2)}\end{matrix}\right.\)
\(\Rightarrow \frac{1}{9}+\frac{1}{25}+....+\frac{1}{(2n+1)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n(2n+2)}=M\) (1)
\(2M=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{2n(2n+2)}\)
\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{2n+2-2n}{2n(2n+2)}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\)
\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\)
\(\Rightarrow M< \frac{1}{4} (2)\)
Từ (1),(2) suy ra \(\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2n+1)^2}< \frac{1}{4}\) (đpcm)
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
Ta co:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ap vào bài toan được
\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)