Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x^2=1\) thì \(x=1\)". Mệnh để đảo là "Nếu \(x=1\) thì \(x^2=1\)"
b) Mệnh đề đảo "Nếu \(x=1\) thì \(x^2=1\) là đúng
c) Với \(x=-1\) thì mệnh đề \(\left(P\Rightarrow Q\right):\)sai
a) \(\left(P\Rightarrow Q\right):\) "Nếu a có tận cùng bằng 0 thì a chia hết cho 5".
Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)"Nếu a chia hết cho 5 thì a có tận cùng bằng 0"
b) \(\left(P\Rightarrow Q\right):\) đúng. \(\left(Q\Rightarrow P\right):\) sai
a) \(\left(P\Rightarrow Q\right)\) : " Nếu AB = AC thì tam giác ABC cân"
Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)" Nếu tam giác ABC cân thì AB = AC"
b) \(\left(P\Rightarrow Q\right)\) : đúng, \(\left(Q\Rightarrow P\right):\)sai
a) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì \(0 < a < b\)”
b) Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)”
c) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì \(0 < a < b\)” sai,
Chẳng hạn \(a = 2;\;b = -3\) ta có: \({2^2} < {( - 3)^2}\) nhưng không suy ra \(0<2<-3\).
Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)” đúng.
a) Với n = 32, ta có các mệnh đề P, Q khi đó là:
P: “Số tự nhiên 32 chia hết cho 16”;
Q: “Số tự nhiên 32 chia hết cho 8”;
Mệnh đề P ⇒ Q: “Nếu số tự nhiên 32 chia hết cho 16 thì số tự nhiên 32 chia hết cho 8”.
Đây là mệnh đề đúng vì 32 chia hết cho 16 và 8.
b) Với n = 40, ta có các mệnh đề P, Q khi đó là:
P: “Số tự nhiên 40 chia hết cho 16”;
Q: “Số tự nhiên 40 chia hết cho 8”;
Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P: “Nếu số tự nhiên 40 chia hết cho 8 thì số tự nhiên 40 chia hết cho 16”.
Mệnh đề đảo này là mệnh đề sai. Vì 40 chia hết cho 8 nhưng 40 không chia hết cho 16.
(P⇒Q): "Nếu x 2 = 1 thì x = 1". Mệnh đề đảo là: “Nếu x = 1 thì x 2 = 1 thì x =1”.
Mệnh đề “√2 là số hữu tỉ’’ sai vì √2 là số vô tỉ
Mệnh đề phủ định: "√2 không phải là một số hữu tỉ"
a) Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình bình hành thì nó có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
Mệnh đề này đúng vì “hai đường chéo cắt nhau tại trung điểm của mỗi đường” là tính chất của hình hình hành.
b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\), được phát biểu là: “Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì nó là hình bình hành”.
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.
b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"
c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai