Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a+bc=a(a+b+c)+ab=(a+b)(a+c)
tương tự b+ca=(b+c)(a+b)
c+ab=(a+c)(b+c)
ad bđt cô si cho 3 số dương ta có
a^3/(a+b)(a+c)+a+b/8+a+c/8 >=3a/4
tương tự bạn lm tiếp nhé
a/
Biến đổi tương đương:
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\left(x+y\right)\left(a^2y+b^2x\right)\ge xy\left(a+b\right)^2\)
\(\Leftrightarrow a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+b^2xy+2abxy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Vậy BĐT ban đầu đúng (đpcm), dấu "=" xảy ra khi \(ay=bx\)
b/
Mở rộng cho 3 số, ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Vậy \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với x, y, z dương
Mặt khác ta luôn có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) \(\forall a,b,c\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\ge0\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Áp dụng:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{\left(a^2\right)^2}{ab}+\frac{\left(b^2\right)^2}{bc}+\frac{\left(c^2\right)^2}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\)
Dấu "=" xảy ra khi \(a=b=c\)
Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)
\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng vế với vế ta được :
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)
\(VT=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
\(VT\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{24\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}=\frac{10}{3}\)
Dấu "=" xảy ra khi \(a=b=c\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Để làm được bài toán trên, trước tiên ta phải chứng minh được bất đẳng thức đơn giản sau:
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) \(\left(1\right)\) với mọi \(a,b,c,d\in R\) và \(x,y>0\)
Thật vậy, bất đẳng thức \(\left(1\right)\) được viết lại thành:
\(ay^2\left(x+y\right)+b^2x\left(x+y\right)\ge\left(a+b\right)^2xy\) (nhân cả hai vế của bđt với \(xy\left(x+y\right)>0\))
\(\Leftrightarrow\) \(\left(ay-bx\right)^2\ge0\) \(\left(2\right)\)
Bất đẳng thức \(\left(2\right)\) hiển nhiên đúng. Mặt khác, các phép biến đổi trên tương đương nên bđt \(\left(1\right)\) được chứng minh.
Xảy ra đẳng thức trên khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}\)
Khi đó, với \(6\) số \(a,b,c,x,y,z\) bất kỳ và \(x,y,z>0\), áp dụng bất đẳng thức \(\left(1\right)\) hai lần, ta chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) \(\left(3\right)\)
Biển đổi vế trái của bất đẳng thức \(\left(\text{*}\right)\), và kết hợp sử dụng bđt \(\left(3\right)\), ta có:
\(VT\left(\text{*}\right)=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)
\(=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ca+a^2\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Mà \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
nên khi đó, \(VT\left(\text{*}\right)\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)
Giờ, ta chỉ cần chứng minh \(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{a+b+c}{3}\)
Thật vậy, ta dễ dàng chứng minh được: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Do đó, \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Chia cả hai vế của bđt cho \(a+b+c>0\). Không đổi chiều bất đẳng thức, ta có:
\(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\) \(\left(đpcm\right)\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c\)
Vậy, \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\) với mọi \(a,b,c\in R^+\)
Làm đại luôn mặc dù chưa xong xD. Có sai sót gì cho xin lỗi nha!
Đặt: \(M=\frac{a^2+bc}{\left(b+c\right)^2}+\frac{b^2+ca}{\left(c+a\right)^2}+\frac{c^2+ab}{\left(a+b\right)^2}\)
\(M=\frac{\frac{1}{\left(b+c\right)^2}}{\frac{1}{a^2+bc}}+\frac{\frac{1}{\left(c+a\right)^2}}{\frac{1}{b^2+ca}}+\frac{\frac{1}{\left(a+b\right)^2}}{\frac{1}{c^2+ab}}\)
Áp dụng Bđt AM-GM dạng Engel:
\(M\ge\frac{\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2}{\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}}\)
Chuẩn hóa: \(a+b+c=3\)
Có: \(A=\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2\ge\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\left(\frac{3}{2}\right)^2\)
CM:\(B=\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{3}{2}\)so what ? Tới đây k biết làm.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
a, b, c dương
Ta có \(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\) (1)
Tương tự \(\frac{b^3}{c}+bc\ge2b^2\) (2) và \(\frac{c^3}{a}+ca\ge2c^2\) (3)
Cộng (1), (2), (3) vế theo vế: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
\(\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Đẳng thức xảy ra tại a=b=c