K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

44^2 =1936

45^2 =2025

phần thừa dư do 2018 không cp : 2018-[1936+(2025-1936-1 )/2] = 38 số

\(S=\dfrac{2}{1}+\dfrac{4}{2}+\dfrac{6}{3}+...+\dfrac{88}{44}+\dfrac{38}{45}=2.44+\dfrac{38}{45}\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Bạn xem lời giải tại đây:

cho 100 STN \(a_1,a_2,...,a_{100}\) thỏa mãn: \(\dfrac{1}{\sqrt{a_1}} \dfrac{1}{\sqrt{a_2}} ... \dfrac{1}{\sqrt{a_{100}... - Hoc24

25 tháng 10 2021

TK: Câu hỏi của Lãnh Hạ Thiên Băng - Toán lớp 6 - Học trực tuyến OLM

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:Giả sử trong 100 số tự nhiên $a_1,a_2,...,a_{100}$ không có 2 số nào bằng nhau. Khi đó:

\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)

Mà:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 19\) 

Do đó \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}< 19\) (trái với giả thiết)

Suy ra điều giả sử là sai. Tức là trong 100 số tự nhiên có 2 số bằng nhau (đpcm)

 

 

 

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Bạn có thể xem cách chứng minh \(\sum_{n=1}^{100} \frac{1}{\sqrt{n}}< 19\) tại đây:

Chứng minh rằng \(2\left(\sqrt{n 1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) (với \(n\in... - Hoc24

2 tháng 8 2017

Giả sử 100 số tự nhiên đã cho đôi một khác nhau và \(a_1\ge1\),\(a_2\ge2\),..\(a_{100}\ge100\)( vì a là số tự nhiên)

\(\Rightarrow S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\)

Ta có điều sau:\(\dfrac{1}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}+\sqrt{n}}< \dfrac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-\sqrt{n-1}\)

\(\Rightarrow S< 1+2.\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=1+2.\left(10-1\right)=19\)( trái với giả thiết)

nên có ít nhất 2 trong 100 số đã cho bằng nhau .

2 tháng 8 2017

Làm hộ câu tìm xyzt

10 tháng 3 2017

\(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)

\(\Leftrightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{n}{2n-1}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{2\left(a_1+a_2+...+a_n\right)-\left(a^2_1+a^2_2+...+a_n^2\right)}\)

\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{1}{2-\left(a^2_1+a^2_2+...+a_n^2\right)}\)

Chứng minh rằng \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)

\(\Leftrightarrow2n-1\ge n\left[2-\left(a^2_1+a^2_2+...+a^2_n\right)\right]\)

\(\Leftrightarrow2n-1\ge2n-n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow-1\ge-n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow1\le n\left(a^2_1+a^2_2+...+a^2_n\right)\)

\(\Leftrightarrow\dfrac{1}{n}\le a^2_1+a^2_2+...+a^2_n\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow VP=\dfrac{a^2_1}{1}+\dfrac{a^2_2}{1}+...+\dfrac{a^2_n}{1}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}=\dfrac{1}{n}\)

\(\Rightarrow\) đpcm

Vậy \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)

\(\Rightarrow\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\) ( đpcm )

10 tháng 3 2017

lp 7

13 tháng 6 2017

(xem ở ví dụ 28) là thế nào hả bạn