\(a^2+b^2+c^2+2\sqrt{3abc}\le1\)

help...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

one piece

18 tháng 12 2016

Em mong cac ban giup cau 2 thoi cung duoc a

2 tháng 2 2018

Ta cần chứng minh

\(\left(a+b+c\right)^2\ge a^2+b^2+c^2+2\sqrt{3\left(a+b+c\right)abc}\)

\(\Leftrightarrow ab+bc+ca\ge\sqrt{3\left(a+b+c\right)abc}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2-abc^2-bca^2-cab^2\ge0\)

\(\Leftrightarrow\left(ab-bc\right)^2+\left(bc-ca\right)^2+\left(ca-ab\right)^2\ge0\) (đúng)

28 tháng 1 2018

Câu hỏi của Nam Khánh Lê lúc 8:29

28 tháng 1 2018

câu đó bị sai mà

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

28 tháng 1 2018

Áp dụng bđt (x+y+z)^2 >= xy+yz+zx với x,y,z > 0 ta có: 

(ab+bc+ca)^2 >= 3.(ab.bc+bc.ca+ca.ab) = 3abc.(a+b+c) = 3abc ( vì a+b+c = 1 )

=> a^2+b^2+c^2+2\(\sqrt{3abc}\)< = a^2+b^2+c^2+2\(\sqrt{\left(ab+bc+ca\right)^2}\)= a^2+b^2+c^2+2(ab+bc+ca) = (a+b+c)^2 = 1

Dấu "=" xảy ra <=> a=b=c=1/3

Vậy GTNN của a^2+b^2+c^2+2\(\sqrt{3abc}\)= 1 <=> a=b=c=1/3

Tk mk nha

Đầu tiên ta cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng:\(\Rightarrow\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\)

Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca=\left(a+b+c\right)^2\le1\)

\(\Rightarrow\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\ge\dfrac{9}{1}=9\)

\(\Rightarrowđpcm\)

6 tháng 7 2016

Trả lời hộ mình đi

16 tháng 10 2020

a, b, c đôi một khác nhau => a ≠ b ≠ c

a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

I) \(a+b+c=0\Rightarrow\hept{\begin{cases}-a=b+c\\-b=a+c\\-c=a+b\end{cases}}\)

Xét các mẫu thức ta có :

1) a2 + b2 - c2 = a2 + ( b - c )( b + c ) = a2 - a( b + c ) = a2 - ab + ac = a( a - b + c ) = a( a + b + c - 2b ) = -2ab

TT : b2 + c2 - a2 = -2bc

       c2 + a2 - b2 = -2ac

Thế vô A ta được :

\(A=\frac{-1}{2ab}+\frac{-1}{2bc}+\frac{-1}{2ac}=\frac{-c}{2abc}+\frac{-a}{2abc}+\frac{-b}{2abc}=\frac{-\left(a+b+c\right)}{2abc}=0\)

II) a2 + b2 + c2 - ab - ac - ab = 0

<=> 2(a2 + b2 + c2 - ab - ac - ab) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2ab = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)( trái với đề bài )

=> A = 0