K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

Chọn A

19 tháng 4 2018

Chọn A

Ta có 5hgIkEvdGMeL.pngMDdrrBA6k4qJ.png,

Duy ra phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là HRdnxw80B1kD.png, H8rX7qzP0OlU.png.

Đường tròn RFA71F9NX74R.png có tâm YbLqf4Ehsqih.png và bán kính n1efIkVsz9pD.png.

Đường thẳng mZDxpbxx2V3v.pngtiếp xúc với đường tròn zxTKiz36g2tn.pngkhi và chỉ khi yI9VUklqdOby.pngmmiOhcPM9dCM.pngLMQtI93i0gx1.png.

Vậy Z8ZZ4ld9H4JP.png.

 

NV
20 tháng 9 2020

a.

\(y'=\frac{-1-m^2}{\left(x-1\right)^2}< 0\Rightarrow\) hàm nghịch biến trên mỗi khoảng xác định

\(\Rightarrow\) Không tồn tại GTLN của hàm trên \(\left[1;3\right]\) (chắc bạn ghi sai đề bài vì trên [1;3] có điểm đặc biệt \(x=1\) khiến hàm ko xác định đồng thời hàm nghịch biến nên \(y_{max}=+\infty\) trên đoạn này)

b.

\(y\ge3\) ; \(\forall x\in\left[-3;0\right]\Leftrightarrow\min\limits_{\left[-3;0\right]}y\ge3\)

Xét hàm \(f\left(x\right)=x^4-2x^2+1-m\)

\(f'\left(x\right)=4x^3-4x=0\Rightarrow x=\left\{-1;0;1\right\}\)

\(f\left(-3\right)=64-m\) ; \(f\left(-1\right)=m\) ; \(f\left(0\right)=1-m\)

Nếu \(f\left(x\right)=0\) có nghiệm thuộc \(\left[-3;0\right]\Leftrightarrow0\le m\le64\) thì \(\min\limits_{\left[-3;0\right]}y=0\) (ktm)

\(\Rightarrow\left[{}\begin{matrix}m< 0\\m>64\end{matrix}\right.\)

Khi đó \(\min\limits_{\left[-3;0\right]}=min\left\{\left|64-m\right|;\left|m\right|\right\}\)

- Nếu \(y_{min}=\left|64-m\right|\Rightarrow\left\{{}\begin{matrix}\left|m\right|\ge\left|64-m\right|\\\left|64-m\right|\ge3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ge32\\\left[{}\begin{matrix}m\ge67\\m\le61\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge67\)

- Nếu \(y_{min}=\left|m\right|\Rightarrow\left\{{}\begin{matrix}\left|64-m\right|\ge\left|m\right|\\\left|m\right|\ge3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le32\\\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\le-3\)

Vậy \(\left[{}\begin{matrix}m\ge67\\m\le-3\end{matrix}\right.\)

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

16 tháng 8 2016

bn ơi câu a t chưa làm chưa biết nhưng câu b chắc chắn có Max tại x=-3 nhé !   Nếu bn chỉ tìm ra Min là chưa đủ 

 

NV
1 tháng 8 2020

1. Không rõ đề

2.

\(y'=\sqrt{x^2+3}+\frac{x\left(x-6\right)}{\sqrt{x^2+3}}=\frac{2x^2-6x+3}{\sqrt{x^2+3}}< 0;\forall x\in\left[1;2\right]\)

\(\Rightarrow\) Hàm nghịch biến trên \(\left[1;2\right]\Rightarrow y_{max}=y\left(1\right)=-10\)

3.

\(y'=3x^2-4mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{4m}{3}\end{matrix}\right.\)

Ta có: \(y\left(1\right)=3-3m\) ; \(y\left(3\right)=29-19m\)

TH1: \(\frac{4m}{3}\le1\Rightarrow m\le\frac{3}{4}\) khi đó hàm đồng biến trên \(\left[1;3\right]\Rightarrow y_{max}=y\left(3\right)\)

\(\Rightarrow29-19m=6\Leftrightarrow m=\frac{23}{19}>\frac{3}{4}\left(ktm\right)\)

TH2: \(\frac{4m}{3}\ge3\Rightarrow m\ge\frac{9}{4}\)

Khi đó hàm nghịch biến trên \(\left[1;3\right]\Rightarrow y_{max}=y\left(1\right)\)

\(\Rightarrow3-3m=6\Rightarrow m=-1< \frac{9}{4}\left(ktm\right)\)

TH3: \(1< \frac{4m}{3}< 3\Rightarrow\frac{3}{4}< m< \frac{9}{4}\)

Hàm nghịch biến trên \(\left(1;\frac{4m}{3}\right)\) và đồng biến trên \(\left(\frac{4m}{3};3\right)\)

\(\Rightarrow\) Hàm đạt GTLN tại \(x=1\) hoặc \(x=3\)

\(y\left(1\right)=3-3m=6\Rightarrow m=-1\notin\left(\frac{3}{4};\frac{9}{4}\right)\) (loại)

\(y\left(3\right)=29-19m=6\Rightarrow m=\frac{23}{19}\in\left(\frac{3}{4};\frac{9}{4}\right)\)

Vậy \(m=\frac{23}{19}\)