K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

4

19 tháng 2 2017

có người giải rồi mà

30 tháng 7 2016

\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)

=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)

26 tháng 3 2020

2/Theo đề ta có:

\(x^2+y^2=a^2+b^2\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)(1)

Lại có: \(x-a=b-y\) Thay vào (1) đc

\(\left(x-a\right)\left(x+a\right)-\left(x-a\right)\left(b+y\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a-b-y\right)=0\Rightarrow x=a\)(2)

Tương tự ta cũng có:

\(\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)

\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\Rightarrow b=y\)(3)

(2) và (3) có ĐPCM

26 tháng 3 2020

Bạn tham khảo câu trả lời ở đây nhé:

http://pitago.vn/question/cho-a-b-c-doi-mot-khac-nhau-thoa-man-abacbc-1-tinh-gia-tr-40688.html

20 tháng 2 2017

4

5 tháng 3 2020

a/\(x\ne\left(+-1,+-\sqrt{2},0\right)\)

\(P=\frac{x^3+x^2-x-1}{x-1}.\frac{x^3-x^2-x+1}{x+1}:\frac{x\left(x-1\right)^2\left(x+1\right)^2}{x^2-2}\)

\(\Leftrightarrow P=\frac{x^2\left(x+1\right)-\left(x+1\right)}{x-1}.\frac{x^2\left(x-1\right)-\left(x-1\right)}{x+1}.\frac{x^2-2}{x\left(x-1\right)^2\left(x+1\right)^2}\)

\(\Leftrightarrow P=\frac{\left(x-1\right)\left(x+1\right)^2}{x-1}.\frac{\left(x+1\right)\left(x-1\right)^2}{x+1}.\frac{x^2-2}{x\left(x-1\right)^2\left(x+1\right)^2}\)

\(\Leftrightarrow P=\frac{x^2-2}{x}\)

5 tháng 3 2020

\(P=\frac{x^2-2}{x}=x-\frac{2}{x}\)

Để P nguyên thì \(-2⋮x\Rightarrow x\inƯ\left(-2\right)\Rightarrow x=\left(+-1,+-2\right)\)

15 tháng 12 2018
https://i.imgur.com/eszN8eV.jpg

Bài 3:

a: ĐKXĐ: x<>2

b: \(M=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)

c: Khi x=4001/2000 thì \(M=\dfrac{3}{\dfrac{4001}{2000}-2}=3:\dfrac{1}{2000}=6000\)

Bài 2: 

\(\dfrac{1}{2-x}+\dfrac{x+10}{x^3-8}=0\)

\(\Leftrightarrow\dfrac{-1}{x-2}+\dfrac{x+10}{\left(x-2\right)\left(x^2+2x+4\right)}=0\)

\(\Leftrightarrow-x^2-2x-4+x+10=0\)

\(\Leftrightarrow-x^2-x+6=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(loại)