Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-|1-3x|+|3x-1|^2\)
\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(3x-1\right)^2}=\left|x+1\right|+\left|3x-1\right|\)
Với \(x\le-1:A=-x-1-3x+1=-4x\)
Để A nhỏ nhất thì x lớn nhất => x = -1 => A = 4
Với -1 < x <= 1/3: \(A=x+1-3x+1=2-2x\)
Để A nhỏ nhất thì x lớn nhất => x = 1/3 => A = 4/3
Với x > 1/3: \(A=x+1+3x-1=4x\)
Do x > 1/3 => A > 4/3
=> A min = 4/3 <=> x = 1/3
\(B=3\left(x^2-2x+\frac{1}{3}\right)=3\left[\left(x^2-2x+1\right)-\frac{2}{3}\right]=3\left(x-1\right)^2-2\)
=> Vì 3(x-1)^2 >= 0 => B >= -2
B min = -2 <=> 3(x-1)^2 = 0 <=> x = 1
\(C=2\left(x-\frac{3}{2}\sqrt{x}\right)=2\left[\left(x-2.\frac{3}{4}\sqrt{x}+\frac{9}{16}\right)-\frac{9}{16}\right]=2\left(\sqrt{x}-\frac{3}{4}\right)^2-\frac{9}{8}\)
=> C >= -9/8
C min = -9/8 <=> căn x = 3/4 => x = 9/16
Lời giải:
Ta có:
\(A=1-\sqrt{1-6x+9x^2}+(3x-1)^2=1-\sqrt{(3x-1)^2}+(3x-1)^2\)
\(=1-|3x-1|+|3x-1|^2=1-t+t^2\) (đặt \(t=|3x-1|, t\geq 0)\)
\(=(t-\frac{1}{2})^2+\frac{3}{4}\)
Ta thấy \((t-\frac{1}{2})^2\geq 0, \forall t\geq 0\)
\(\Rightarrow A=(t-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy $A$ đạt min bằng $\frac{3}{4}$. Giá trị này đạt được tại $t=\frac{1}{2}\Leftrightarrow |3x-1|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 3x-1=\frac{1}{2}\\ 3x-1=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{1}{6}\end{matrix}\right.\)
Bạn chú ý lần sau không đăng 1 bài nhiều lần tránh làm loãng box toán.