K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

ta có với mọi x: /x+5/ lớn hơn hoặc bằng 0

           suy ra ; -/x+5/ bé hơn hoặc bằng 0

           suy ra ;  3.5-/x+5/ bé hơn hoặc bằng 3.5 =15

      suy ra  1/ 15-/x+5/ lớn hơn hoặc bằng 1/15

Dấu bằng xảy ra khi và chỉ khi /x+5/=0

                                  suy ra x=-5

vậy E min =1/15 khi và chỉ khi x=-5

7 tháng 9 2019

Vì \(-|x+5|\le0;\forall x\)

\(\Rightarrow3,5-|x+5|\le3,5-0;\forall x\)

\(\Rightarrow\frac{1}{3,5-|x+5|}\ge\frac{1}{3,5};\forall x\)

Hay \(E\ge\frac{1}{3,5};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow|x+5|=0\)

                        \(\Leftrightarrow x=-5\)

Vậy MIN \(E=\frac{1}{3,5}\Leftrightarrow x=-5\)

-|x+5|<=0 với mọi x

=>3,5-|x+5|<=3,5

=>E>=1/3,5=1:7/2=2/7

dấu "=" xảy ra khi và chỉ khi x+5=0

=>x=-5

vậy GTNN của E=2/7 tại x=-5

9 tháng 11 2016

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

15 tháng 11 2015

|x + 5| > 0

- |x + 5| < 0

3,5 - |x + 5| < 3,5

\(A=\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}=\frac{2}{7}\)

\(\Rightarrow A_{min}=\frac{2}{7}\Leftrightarrow x=-5\)

3 tháng 1 2019

A=3x-17/4-x

=>(-1)A=17-3x/4-x

=>(-1)A=12-3x+5/4-x

=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)

Để A có GTNN=>-3-(5/4-x) có GTNN 

=>5/4-x có GTLN

=>4-x có GTNN =>=>4-x=-5=>x=9

=>A=3.9-17/4-9

=>A=10/-5

=>A=-2

Vậy..........

3 tháng 1 2019

GTNN là gì vậy

9 tháng 9 2016

Ta có : \(\left|x-2\right|\ge0\)

\(\Rightarrow\left|x-2\right|+3\ge3\)

\(\Rightarrow\frac{1}{3+\left|x-2\right|}\le\frac{1}{3}\)

\(\Rightarrow10-\frac{1}{3+\left|x-2\right|}\ge\frac{29}{3}\)

Dấu " = " xảy ra khi \(x-2=0\)

                                 \(x=2\)

\(\Rightarrow MIN_D=\frac{29}{3}\) khi \(x=2\)

28 tháng 8 2016

Ta có :

\(\left|x-2\right|\ge0\)

\(\Rightarrow\left|x-2\right|+3\ge3\)

\(\Rightarrow\frac{1}{3+\left|x-2\right|}\le\frac{1}{3}\)

\(\Rightarrow10-\frac{1}{3+\left|x-2\right|}\ge\frac{29}{3}\)

\(\Rightarrow D_{min}=\frac{29}{3}\)

\(\Leftrightarrow\left|x-2\right|=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy ...

8 tháng 7 2021

Để A đạt GTLN 

=> 6 - x  đạt GTNN 

=> 6 - x = 1 (Vì x nguyên) (nếu 6 - x < 0 thì A < 0 => A không đạt GTLN) 

=> x = 5

Vậy x = 5 thì A đạt GTLN