K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)

4 tháng 4 2017

giá trị nhỏ nhất là 2011

đúng 100% !tk nha

Ta có : \(\left|x+1\right|\ge0\forall x\)

Nên : |x + 1| nhỏ nhất bằng 0 

<=> x + 1 = 0

=> x = -1

Lại có : \(\left|x-y\right|\ge0\forall x\)

Nên : |x - y| nhỏ nhất bằng 0 

=> x - y = 0 

mà x = -1

=> -1 - y = 0 

=> y = -1

Vậy A = |x - y| + |x + 1| + 2016 nhwor nhất bằng 0 + 0 + 2016

=> A nhở nhất bằng 2016 khi x = y = -1

14 tháng 4 2020

Ta có: |x-y| >=0 với mọi x,y

          |x+1| >=0 với mọi x,y

=> |x-y|+|x+1|+2016 >=2016 với mọi x,y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)

7 tháng 7 2018

Ta có : 

\(\left|x-y\right|\ge0;\left|x+1\right|\ge0\)

\(\Rightarrow A=\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall xy\)

Dấu \("="\)

\(\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)

Vậy ...

7 tháng 7 2018

\(A=\left|x-y\right|+\left|x+1\right|+2018\)

Mà \(\left|x-y\right|;\left|x+1\right|\ge0\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall x;y\)

\(\Rightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\x=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)

Vậy A = 2018 khi x;y = -1

11 tháng 1 2017

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

11 tháng 1 2017

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

Vì |x-y| \(\ge\)0 với mọi x,y;|x+1|\(\ge\)0 vs mọi x

=>A\(\ge\)2016 vs mọi x,y

=> A đạt giá trị nhỏ nhất khi:\(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=-1\end{cases}}\)

vậy với x=y=-1 thì A đạt giá trị nhỏ nhất là 2016

k mik nha

bài này mik từng làm rồi

-----Chúc hok tốt---------

10 tháng 7 2018

ta có

\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y

\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y

dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)

7 tháng 1 2020

các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi

7 tháng 1 2020

a,Vì \(|x+5|\ge0\) với \(\forall x\)

=>\(A\le20\)

Dấu bằng xảy ra \(\Leftrightarrow x+5=0\)

                                 x=-5

Vậy Max A=20 khi x=-5

31 tháng 12 2017

Vi /x-y/≥0 

   /x+1/≥0

=>  A≥ 2017 với mọi xy

dâu = xảy ra khi  /x-y/=0<=>y=-1

                           /x+1/=0<=>x=-1 

15 tháng 4 2018

Vì |x-y|\(\ge\)0 với mọi x,y

|x+1|\(\ge\)0 Với mọi x

\(\Rightarrow\)|x-y|+|x+1|\(\ge\)0 Với mọi x,y

\(\Rightarrow\)|x-y|+|x+1|+2016\(\ge\)2016 với mọi x,y

\(\Rightarrow\)A\(\ge\)2016 với mọi x,y

Dấu '=' xảy ra\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x=0-1=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}-1-y=0\\x=-1\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}y=-1-0=-1\\x=-1\end{cases}}\)

Vậy Min A=2016\(\Leftrightarrow\)x=-1,y=-1