K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(K=x^2-7x+13\)

\(K=x^2-2x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+13\)

\(K=\left(x-\frac{7}{2}\right)^2-\frac{49}{4}+13\)

\(K=\left(x-\frac{7}{2}\right)^2+\frac{3}{4}\)

Nhận xét: \(\left(x-\frac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{7}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{7}{2}\right)^2=0\Rightarrow x=\frac{7}{2}\)

Vậy \(minK=\frac{3}{4}\Leftrightarrow x=\frac{7}{2}\)

12 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(M=-x^2+4x+4\)

\(M=-\left(x^2-4x-4\right)\)

\(M=-\left(x^2-4x+4-8\right)\)

\(M=-\left[\left(x-2\right)^2-8\right]\)

\(M=-\left(x-2\right)^2+8\)

Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+8\le8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxM=8\Leftrightarrow x=2\)

12 tháng 7 2018

\(B=x^3-y^3-\left(x^2+xy+y^2\right)\left(x-y\right)\)

\(\Rightarrow B=x^3-y^3-\left(x^3-y^3\right)\)

\(\Rightarrow B=0\)

\(\Rightarrow B\)ko phụ thuộc vào g/t của biến 

\(C=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)

\(\Rightarrow C=3x^2+15x-\left(3x^2+18x-3x-18\right)+8\)

\(\Rightarrow C=3x^2+15x-3x^2-15x+18+8\)

\(\Rightarrow C=26\)

Vậy \(C\)ko phụ thuộc vào giá trị của biến 

19 tháng 9 2020

Câu 1.

B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )

= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2

= 18x2 + 18x + 3

| x | = 2 => x = ±2

Với x = 2 => B = 18.22 + 18.2 + 3 = 111

Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39

C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )

= 4x2 + 4xy + y2 + xy - xz - y2 + yz

= 4x2 + 5xy - xz + yz

Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9

Câu 2.

Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )

Theo đề bài ta có :

( a + 1 )( a + 2 ) - a( a + 1 ) = 50

<=> a2 + 3a + 2 - a2 - a = 50

<=> 2a + 2 = 50

<=> 2a = 48

<=> a = 24 ( tmđk )

=> a + 1 = 25 ; a + 2 = 26

Vậy ba số cần tìm là 24 ; 25 ; 26 

Câu 3.

Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4

( x + y )( x3 - x2y + xy2 - y3 )

= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4

= x4 - y4 ( đpcm )

Câu 1 :

\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)

\(=18x^2-4x-7\)

Với \(|x|=2\Rightarrow x=\pm2\)

Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)

Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)

Câu b tương tự

Câu 2 :

Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .

Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)

\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)

\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)

\(\Leftrightarrow2a=48\)

\(\Leftrightarrow a=24\)

Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .

Câu 3 :

Ta có :

\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)

\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)

\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)

\(=x^4-y^4\)

=> đpcm 

5 tháng 12 2016

giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho 

xét x^3 + xyz= 975 ta có

x^3 + xyz= x(x^2+yz)=975 => x là số lẻ

tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ

x là số lẻ => x^3 là số lẻ 

=> x^3+xyz là số chẵn 

trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho