K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Để \(\frac{x}{x-2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x-2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}x-2>0\Leftrightarrow x>2\)

Để \(\frac{x}{x+2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x+2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-2\\x\ge2\end{cases}\Leftrightarrow}x\ge2\)

Để \(\frac{x}{x^2-4}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x-2\ge0\\x^2-4\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\ne\pm2\end{cases}\Leftrightarrow x>2}\)

Để \(\sqrt{\frac{1}{3-2x}}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}3-2x\ne0\\3-2x\ge0\end{cases}\Leftrightarrow}3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)

Để \(\sqrt{\frac{4}{2x+3}}\) có nghĩa thì điều kiện là:

\(2x+3>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)

Để \(\sqrt{-\frac{2}{x+1}}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}-\frac{2}{x+1}\ge0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1\le0\\x\ne-1\end{cases}\Leftrightarrow}x< -1\)

20 tháng 7 2019

a) ĐK: \(\left\{{}\begin{matrix}x\ne-1\\\frac{4-x}{x+1}\ge0\end{matrix}\right.\). Lập bảng xét dấu sẽ được \(-1< x\le4\)

b) Tương tự

c)(em ko chắc) ĐK: \(\left\{{}\begin{matrix}x^2-4\ge0\left(1\right)\\\frac{x-2}{x+1}\ge0\left(2\right)\\x\ne-1\end{matrix}\right.\). Giải (1) ta được \(x\le-2\text{hoặc }x\ge2\)

Giải (2) được \(x\le-1\text{ hoặc }x\ge2\)

Kết hợp lại ta được: \(x\le-2\text{hoặc }x\ge2\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

h)

ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)

k)

ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)

m)

ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$

b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)

c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$

d) ĐK:

\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)

e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$

f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)

3 tháng 9 2019

tìm x để căn thức sau có nghĩa

a) \(\sqrt{2x-1}\) có nghĩa khi 2x - 1 \(\ge\) 0 <=> 2x \(\ge\) 1 <=> x \(\ge\) \(\frac{1}{2}\)

Vậy: .......

b) \(\sqrt{4-x}\) có nghĩa khi 4 - x \(\ge\) 0

<=> -x \(\ge\) -4 <=> x \(\le\) 1

Vậy...............

c) \(\sqrt{\frac{3x+1}{2}}\) có nghĩa khi \(\frac{3x+1}{2}\ge0\)

<=> 3x + 1 \(\ge\) 0

<=> x \(\ge\) \(\frac{-1}{3}\)

Vậy.............

d) \(\sqrt{x^2+1}\) có nghĩa khi x2 + 1 \(\ge\) 0

Ta có: x2 \(\ge\) 0 và 1 > 0

=> x2 + 1 > 0 vs mọi x \(\in\) R

Vậy: \(\sqrt{x^2+1}\) có nghĩa vs mọi x \(\in\) R

e) \(\sqrt{x-2}+\frac{1}{x^2-4}\) có nghĩa khi

x - 2 \(\ge\) 0 và x2 - 4 \(\ne\) 0

<=> x \(\ge\) 2 và x \(\ne\) 2 ; -2

<=> x > 2

Vậy..............

f) \(\sqrt{2x-1}+\sqrt{3-x}\) có nghĩa khi 2x - 1\(\ge\) 0 và 3 - x \(\ge\) 0

<=> x \(\ge\) \(\frac{1}{2}\) và x \(\le\) 3

<=> \(\frac{1}{2}\le x\le3\)

Vậy..............

g) \(\sqrt{\frac{3}{x-1}}\) có nghĩa khi x - 1 > 0 <=> x > 1

Vậy...........

h) \(\sqrt{x^2-6x+9}\) có nghĩa khi x2 - 6x + 9 \(\ge\) 0

<=> (x - 3)2 \(\ge\) 0

Mà: (x - 3)2 \(\ge\) 0 vs mọi x \(\in\) R

Vậy..................

3 tháng 9 2019

cảm ơn nhé leuleu

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\) luôn xđ với mọi x

các câu còn lại tương tự

7 tháng 7 2017

??/

tui mới học lớp 7 mà

....

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:

a) ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$

b) ĐKXĐ: $3+2x>0\Leftrightarrow x>\frac{-3}{2}$

c) ĐKXĐ: $x^2-4\geq 0\Leftrightarrow (x-2)(x+2)\geq 0$

$\Leftrightarrow x\geq 2$ hoặc $x\leq -2$

d)

ĐKXĐ\(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}\neq 2\\ x+1>0\\ x\neq 0\\ \sqrt{x}\neq 3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ x\neq 4\\ x\neq 9\end{matrix}\right.\)

e)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ 7-\sqrt{x}>0\end{matrix}\right.\Leftrightarrow 0\leq x< 49\)

f)

\(\left\{\begin{matrix} 5-x\neq 0\\ \frac{x+3}{5-x}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x+3\geq 0\\ 5-x>0\end{matrix}\right.\\ \left\{\begin{matrix} x+3\leq 0\\ 5-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow -3\leq x< 5\)