K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

Ta có : \(\sqrt{x^2+2x+2}=\sqrt{\left(x^2+2x+1\right)+1}=\sqrt{\left(x+1\right)^2+1}\ge1>0\) với mọi \(x\in R\) 

Vậy với mọi \(x\in R\)thì căn thức trên xác định.

26 tháng 6 2018

cần 2/3x lớn hơn hoặc =0

=>x lớn hơn hoặc bằng 0

30 tháng 7 2018

P/S: Sai thì thôi nhé

Để \(\sqrt{x^2-3}\)có nghĩa

\(\Rightarrow x^2-3\ge0\)

\(\Rightarrow x^2\ge3\)

\(\Rightarrow\orbr{\begin{cases}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{cases}}\)

Vậy \(x\ge\sqrt{3}\)hoặc \(x\le-\sqrt{3}\)

m.n thấy sai thì sửa hộ mk nhé! Thanks~

24 tháng 6 2019

\(a,\sqrt{x^2-8x+18}=\sqrt{x^2-8x+16+2}\)

\(=\sqrt{\left(x-4\right)^2+2}\)

Vì \(\left(x-4\right)^2+2>0\)với \(\forall x\)

\(\Rightarrow\)Biểu thức luôn được xác định với mọi x 

\(b,\sqrt{\frac{3x+4}{x-2}}\)

\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)

\(\frac{3x+4}{x-2}\ge0\)\(\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< -\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)

Mà \(x\ne2\)\(\Rightarrow x>2\)hoặc \(x< -\frac{4}{3}\)

25 tháng 6 2019

a,\(\sqrt{x^2-8x+18=\sqrt{x^2}-8x+16+2.}\)

\(=\sqrt{\left(x-4\right)^2+2}\)

Vì \(\left(x-4\right)^2+2>0\)với\(\forall x\)

\(\Rightarrow\)Biểu thức luônđược xác định với mọi x