Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử y tỷ lệ thuận với x theo hệ số k (k khác 0).
Suy ra: \(\hept{\begin{cases}y_1=k\cdot x_1\\y_2=k\cdot x_2\end{cases}}\)
Giá trị của y khi \(x_3=x_1+x_2\) là \(y_3=k\cdot x_3=k\cdot\left(x_1+x_2\right)=k\cdot x_1+k\cdot x_2=y_1+y_2\)
Vậy giá trị của y khi \(x=x_1+x_2\)là \(y=y_1+y_2\).
Đa thức f(x) là đa thức có bậc cao nhất là bậc 4 nên khi chia cho đa thức g(x) có bậc cao nhất là bậc 2 và không có dư thì được thương là đa thức bậc 2 . Suy ra
f(x) : g(x) = (x2 + cx + d)
<=> f(x) = g(x).(x^2 + cx + d)
<=> x4 - 3x3 + 3x2 + ax + b = (x2 - 3x + 4)(x2 + cx + d)
<=> x4 - 3x3 + 3x2 + ax + b = x4 + x3.(c - 3) + x2.(d - 3c + 4) + x(-3d + 4c) + 4d
Đồng nhất hai vế , ta sẽ tìm được a,b