K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3

9 tháng 12 2016

a) (m^2+4)>0=> voi moi m

b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)

c) (m^2+2m+2=(m+1)^2+1>0  voi m=>f(x) luon dong bien=> dpcm

9 tháng 12 2016

tong quat y=ax+b

DB khi a>0

NB khi a<0

hang so khi a=0

giai

a. với giá trị nào của m thì hàm số y= ( m+4)x +3 là hsđb : 

=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m

b. với giá trị nào của m tì hàm số y= (m-2)x +31 là hsnb

a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)

c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R

ta ca

a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m

=> a>0 với mọi m=> y luôn đồng biến

28 tháng 11 2018

Để hàm số \(y=\left(m^2-5m+6\right)x+\left(m^2+mn-6n\right)+3\) là hàm số bậc nhất thì a=\(m^2-5m+6\ne0\Leftrightarrow m^2-2m-3m+6\ne0\Leftrightarrow m\left(m-2\right)-3\left(m-2\right)\ne0\Leftrightarrow\left(m-2\right)\left(m-3\right)\ne0\Leftrightarrow\)\(\left[{}\begin{matrix}m-2\ne0\\m-3\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}m\ne2\\m\ne3\end{matrix}\right.\)

Vậy \(m\ne2\) hoặc \(m\ne3\) thì hàm số \(y=\left(m^2-5m+6\right)x+\left(m^2+mn-6n\right)+3\) là hàm số bậc nhất

20 tháng 10 2019

Là hàm bậc nhất

NV
20 tháng 10 2019

Hàm số là hàm bậc nhất khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn-6n^2\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

- Với \(m=2\Rightarrow-6n^2+2n+4\ne0\Rightarrow\left\{{}\begin{matrix}n\ne1\\n\ne-\frac{2}{3}\end{matrix}\right.\)

- Với \(m=3\Rightarrow-6n^2+3n+9\ne0\Rightarrow\left\{{}\begin{matrix}n\ne-1\\n\ne\frac{3}{2}\end{matrix}\right.\)

17 tháng 8 2021

a, Để hàm số trên là hàm bậc nhất : \(3m-2\ne0\Leftrightarrow m\ne\frac{2}{3}\)

b, Để hàm số trên là hàm bậc nhất : \(\sqrt{3-m}\ne0\Leftrightarrow3-m\ne0\Leftrightarrow m\ne3\)

c, Để hàm số trên là hàm bậc nhất : \(m+2\ne0;\frac{2m-1}{m+2}\ne0\Leftrightarrow m\ne-2;m\ne\frac{1}{2}\)

d, loại vì hàm bậc 2