K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(C); x^2+6x+y^2-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>I(-3;1); \(R=\sqrt{10}\)

Để Δ tiếp xúc vơi (C) thì d(I;Δ)=căn 10

=>\(\dfrac{\left|-3\cdot3+1\cdot\left(-1\right)+2m\right|}{\sqrt{3^2+\left(-1\right)^2}}=\sqrt{10}\)

=>|2m-10|=10

=>2m-10=10 hoặc 2m-10=-10

=>m=0 hoặc m=10

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4

30 tháng 3 2017

Đáp án: C

(C): x 2  + y 2  = 9 có I(0;0), R = 3

Để Δ tiếp xúc với đường tròn (C) thì

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 1)

17 tháng 11 2017

Ta có (C) có tâm I(m; 0) và bán kính R= 3 nên theo đề bài ta được:

 m= 4 và m= -6

 

Chọn B.

10 tháng 5 2022

a) Gọi đường tròn cần tìm là \(\left(C\right):x^2+y^2-2ax-2by+c=0\)

\(A\left(-1;1\right)\in\left(C\right)\Rightarrow1+1+2a-2b+c=0\Rightarrow2a-2b+c=-2\)

\(B\left(3;1\right)\in\left(C\right)\Rightarrow9+1-6a-2b+c=0\Rightarrow-6a-2b+c=-10\)

\(C\left(1;3\right)\in\left(C\right)\Rightarrow1+9-2a-6b+c=0\Rightarrow-2a-6b+c=-10\)

Giải hệ phương trình ta được: \(a=1;b=1;c=-2\)

Vậy đường tròn cần tìm là: \(x^2+y^2-2x-2y-2=0\)

10 tháng 5 2022

b) Ta có \(\left(C\right):x^2+y^2-4x+6y+3=0\)

\(\Rightarrow a=\dfrac{-4}{-2}=2;b=\dfrac{6}{-2}=-3;c=3\)

\(\Rightarrow I\left(2;-3\right)\) là tâm, bán kính \(R=\sqrt{2^2+\left(-3\right)^2-3}=\sqrt{10}\)

Để \(\left(\Delta\right)\) tiếp xúc đường tròn \(\Leftrightarrow d\left(I;\Delta\right)=R\)

\(\Leftrightarrow\dfrac{\left|9+m\right|}{\sqrt{10}}=\sqrt{10}\Leftrightarrow\left|9+m\right|=10\Leftrightarrow\left[{}\begin{matrix}9+m=10\\9+m=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-19\end{matrix}\right.\)

20 tháng 5 2019

Đường tròn (C): x 2 + y 2 + 4 x − 4 y − 10 = 0  có tâm I(-2;2) và bán kính R = 3 2 .

Khoảng cách d ( ​ I ;     Δ ) =    − 2 + ​ 2 + m 1 2 + ​ 1 2 =    m 2  

Để đường thẳng tiếp xúc đường tròn  thì:

  d ( ​ I ;     Δ ) =    R ⇔    m 2    = 3 2 ⇔ m =    6 ⇔ m =    ± 6

ĐÁP ÁN A

12 tháng 1 2018

Đường tròn (C) có tâm và bán kính là I(0; 0) và R= 3.

∆ tiếp c ( C ) => d( I ; ∆) = R => m 5 = 3 => m = 15 m = - 15

Chọn D.

 

NV
21 tháng 1 2024

1.

Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)

2.

\(\overrightarrow{MI}=\left(1;-2\right)\)

Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt

Phương trình:

\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)

20 tháng 4 2021

- Xét đường tròn \(\left(C\right)\) có tâm \(I\left(1;0\right)\) và \(R=\dfrac{\sqrt{5}}{5}\)

- Để đường thẳng d và đường tròn không có điểm chung 

\(\Leftrightarrow d_{\left(d/I\right)}=\dfrac{\left|m-2m+3\right|}{\sqrt{m^2+1}}>R=\dfrac{\sqrt{5}}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9}{m^2+1}>\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9-0,2m^2-0,2}{m^2+1}>0\)

\(\Leftrightarrow0,8m^2-6m+8,8>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< \dfrac{11}{2}\end{matrix}\right.\)

Vậy ...

 

NV
22 tháng 4 2021

a.

Hai đường thẳng song song khi:

\(\dfrac{m+3}{2}=\dfrac{3}{2}\ne\dfrac{-2m+3}{2-3m}\)

\(\Leftrightarrow m=0\)

b.

Hai đường thẳng trùng nhau khi: \(\dfrac{m+3}{2}=\dfrac{3}{2}=\dfrac{-2m+3}{2-3m}\Rightarrow\) ko tồn tại m thỏa mãn

Vậy 2 đường thẳng cắt nhau khi \(m\ne0\)