K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Bpt <=> \(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)

\(\Leftrightarrow3\left(m-2\right)+4\left(3m+1\right)< 0\)

\(\Leftrightarrow3m-6+12m+4< 0\)

\(\Leftrightarrow3m+12m-2< 0\)

\(\Leftrightarrow15m-2< 0\)

\(\Leftrightarrow15m< 2\)

\(\Leftrightarrow m< \frac{2}{15}\)

Vậy để bt đạt giá trị âm thì m < 2/15 

9 tháng 4 2018

làm hộ mink câu cuối đi

9 tháng 4 2018

\(a)\) Ta có : 

\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)

\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng ) 

\(\Leftrightarrow\)\(3m-6+12m+4< 0\)

\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)

\(\Leftrightarrow\)\(15m-2< 0\)

\(\Leftrightarrow\)\(15m< 2\)

\(\Leftrightarrow\)\(m< \frac{2}{15}\)

Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(b)\) Ta có : 

\(\frac{m-4}{6m+9}>0\)

\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) ) 

\(\Leftrightarrow\)\(m>4\)

Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)

Chúc bạn học tốt ~ 

Quy đồng :

\(A=\frac{2m-3}{2m+3}+\frac{2m+3}{2m-3}\)Đ k : \(\hept{\begin{cases}m\ne\frac{-3}{2}\\m\ne\frac{3}{2}\end{cases}}\)

\(=\frac{\left(2m-3\right)^2+\left(2m+3\right)^2}{\left(2m+3\right)\left(2m-3\right)}\)

\(=\frac{\left(2m-3\right)^2+\left(2m+3\right)^2}{4m^2-9}=P\)

Để A có giá trị âm thì : \(4m^2-9< 0\Rightarrow\left(2m-3\right)\left(2m+3\right)< 0\)

Th1 : \(\hept{\begin{cases}2m-3< 0\\2m+3>0\end{cases}}\Rightarrow\hept{\begin{cases}m< \frac{3}{2}\\m>\frac{-3}{2}\end{cases}}\)

Th2 : \(\hept{\begin{cases}2m-3>0\\2m+3< 0\end{cases}\Rightarrow\hept{\begin{cases}m>\frac{3}{2}\\m< \frac{-3}{2}\end{cases}}}\)

1 tháng 5 2017

Này bạn, các trường hợp như vậy thì phải dùng dấu \(\Leftrightarrow\)nha bạn không là sai

6 tháng 4 2018

a. Ta có x – 3 = 2m + 4

⇔ x = 2m + 4 + 3

⇔ x = 2m + 7

Phương trình có nghiệm số dương khi 2m + 7 > 0 ⇔ m > \(\dfrac{-7}{2}\)

b. Ta có: 2x – 5 = m + 8

⇔ 2x = m + 8 + 5

⇔ 2x = m + 13

⇔ x = \(\dfrac{-\left(x+13\right)}{2}\)

Phương trình có nghiệm số âm khi \(\dfrac{-\left(m+13\right)}{2}\) < 0 ⇔ m + 13 < 0 ⇔ m < -13

4 tháng 5 2017

bài 1:

a) 4n+4+3n-6<19

<=> 7n-2<19

<=> 7n<21 <=> n< 3

b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43

-6n+25\(\leq\)43

-6n\(\leq\)18

n\(\geq\)-3

19 tháng 7 2017

bài 1 ở chỗ nào vậy

12 tháng 4 2023

a) \(x-3=2m+4\)

\(\Leftrightarrow x=2m+4+3\)

\(\Leftrightarrow x=2m+7\)

Phương trình có nghiệm dương khi \(2m+7>0\Leftrightarrow m>-\dfrac{7}{2}\)

b) \(2x-5=m+8\)

\(\Leftrightarrow2x=m+8+5\)

\(\Leftrightarrow2x=m+13\)

\(\Leftrightarrow x=\dfrac{m+13}{2}\)

Phương trình có nghiệm âm khi: \(\dfrac{m+13}{2}< 0\Leftrightarrow m< -13\)

c) \(x-2=3m+4\)

\(\Leftrightarrow x=3m+4+2\)

\(\Leftrightarrow x=3m+6\)

Phương trình có nghiệm lớn hơn 3 khi: \(3m+6>3\Leftrightarrow m>-1\)

6 tháng 6 2017

\(\Leftrightarrow\frac{\left(-m+1\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)         

để biểu thức có nghiệm thì mẫu khác 0

=> điều kiện là\(\hept{\begin{cases}m+8\ne0\\m+3\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne-8\\m\ne-3\end{cases}}}\)

biểu thức trên có giá trị dương khi lớn hơn 0

     <=> \(\frac{-m^2-3m+m+3+m^2+8m-m-8}{\left(m+8\right)\left(m+3\right)}>0\)  

    <=> \(\frac{5m-5}{\left(m+8\right)\left(m+3\right)}>0\)

    <=>    \(\frac{5\left(m-1\right)}{\left(m+8\right)\left(m+3\right)}>0\)

trường hợp 1 (TH1):\(\hept{\begin{cases}5\left(m-1\right)< 0\\\left(m+8\right)< 0\\\left(m+3\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}m< 1\\m< -8\\m>-3\end{cases}\Leftrightarrow}\Phi}\) (không tồn tại m)             (1)

TH2:\(\hept{\begin{cases}5\left(m-1\right)< 0\\m+8>0\\m+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}m< -1\\m>-8\\m< -3\end{cases}\Leftrightarrow}-8< m< -3}\)                                     (2)

TH3: \(\hept{\begin{cases}5\left(m-1\right)>0\\m+8< 0\\m+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}m>1\\m< -8\\m< -3\end{cases}\Leftrightarrow}\Phi}\)(không tồn tại m )                                      (3)

TH4:  \(\hept{\begin{cases}5\left(m-1\right)>0\\m+8>0\\m+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>1\\m>-8\\m>-3\end{cases}\Leftrightarrow}m}>1\)                                                        (4)

VẬY TỪ (1) (2) (3) (4) ==>>   biểu thức đạt giá trị dương khi         \(-8< m< -1\)hoặc    \(m>1\)

NHỚ k mình nha            

28 tháng 8 2020

\(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\)( ĐKXĐ : \(x\ne-8;x\ne-3\))

\(=\frac{\left(-m+1\right)\left(m+3\right)}{\left(m+8\right)\left(m+3\right)}+\frac{\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)

\(=\frac{-m^2-2m+3}{\left(m+8\right)\left(m+3\right)}+\frac{m^2+7m-8}{\left(m+8\right)\left(m+3\right)}\)

\(=\frac{-m^2-2m+3+m^2+7m-8}{\left(m+8\right)\left(m+3\right)}\)

\(=\frac{5m-5}{\left(m+8\right)\left(m+3\right)}\)

Để biểu thức dương ( tức > 0 ) ta xét hai trường hợp sau :

I) \(\hept{\begin{cases}5m-5>0\\\left(m+8\right)\left(m+3\right)>0\end{cases}}\)

+) 5m - 5 > 0 => 5m > 5 => m > 1 (1)

+) ( m + 8 )( m + 3 ) > 0

1. \(\hept{\begin{cases}m+8>0\\m+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-8\\m>-3\end{cases}}\Leftrightarrow m>-3\)(2)

2. \(\hept{\begin{cases}m+8< 0\\m+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -8\\m< -3\end{cases}}\Leftrightarrow m< -8\)(3)

Từ (1) , (2) và (3) => m > 1

II) \(\hept{\begin{cases}5m-5< 0\\\left(m+8\right)\left(m+3\right)< 0\end{cases}}\)

+) 5m - 5 < 0 => 5m < 5 => m < 1 (4)

+) ( m + 8 )( m + 3 ) < 0

1. \(\hept{\begin{cases}m+8< 0\\m+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -8\\m>-3\end{cases}}\)( loại )

2. \(\hept{\begin{cases}m+8>0\\m+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-8\\m< -3\end{cases}}\Leftrightarrow-8< m< -3\)(5)

Từ (4) và (5) => -8 < m < -3

Từ I) và 2)

=> Với m > 1 hoặc -8 < m < -3 thì biểu thức có giá trị dương

\(\frac{\left(m+1\right)\left(m-5\right)}{2}\)có giá trị âm

=> ( m + 1 )( m - 5 ) < 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}m+1< 0\\m-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>5\end{cases}}\)( loại )

2. \(\hept{\begin{cases}m+1>0\\m-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 5\end{cases}}\Leftrightarrow-1< m< 5\)

Vậy với -1 < m < 5 thì biểu thức có giá trị âm

28 tháng 8 2020

Bài làm:

a) Ta có: \(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\) \(\left(m\ne\left\{-8;-3\right\}\right)\)

\(=\frac{\left(1-m\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)

\(=\frac{\left(m-1\right)\left(m+8-m-3\right)}{\left(m+8\right)\left(m+3\right)}\)

\(=\frac{5\left(m-1\right)}{\left(m+8\right)\left(m+3\right)}\)

Để BT có giá trị dương thì ta xét 2 TH sau:

+ Nếu: \(\hept{\begin{cases}5\left(m-1\right)>0\\\left(m+8\right)\left(m+3\right)>0\end{cases}}\Rightarrow m>1\)

+ Nếu: \(\hept{\begin{cases}5\left(m-1\right)< 0\\\left(m+8\right)\left(m+3\right)< 0\end{cases}}\Rightarrow-8< m< -3\)