K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

a) \(P=\frac{a^2b}{c}=0\)\(c\ne0\))

\(\Rightarrow a^2\cdot b=0\)

\(\Rightarrow a^2=0\)hoặc \(b=0\)

\(\Rightarrow a=0\)hoặc \(b=0\)và \(c\ne0\)

\(P=\frac{a^2b}{c}>0\)

Mà \(a^2\ge0\)với mọi \(a\)và \(c\ne0\)

\(\Rightarrow b;c\)cùng dấu

\(\Rightarrow b;c>0\)hoặc \(b;c< 0\)

\(P=\frac{a^2b}{c}< 0\)

Mà \(a^2\ge0\)với mọi \(a\)và \(c\ne0\)

\(\Rightarrow b;c\)khác dấu

\(\Rightarrow b< 0\)thì \(c>0\)và \(b>0\)thì \(c< 0\)

b) \(Q=\frac{x^3}{yz}=0\)\(y;z\ne0\))

\(\Rightarrow x=0\)

\(Q=\frac{x^3}{yz}< 0\)\(\left(y;z\ne0\right)\)

Nếu \(y;z\)cùng dấu \(\Rightarrow x< 0\)

Nếu \(y;z\)khác dấu \(\Rightarrow x>0\)

\(Q=\frac{x^3}{yz}>0\left(y;z\ne0\right)\)

Nếu \(y;z\)cùng dấu \(\Rightarrow x>0\)

Nếu \(y;z\)khác dấu \(\Rightarrow x< 0\)

29 tháng 5 2024

�=�2��=0P=ca2b=0�≠0c=0)

⇒�2⋅�=0a2b=0

⇒�2=0a2=0hoặc �=0b=0

⇒�=0a=0hoặc �=0b=0và �≠0c=0

�=�2��>0P=ca2b>0

Mà �2≥0a20với mọi avà �≠0c=0

⇒�;�b;ccùng dấu

⇒�;�>0b;c>0hoặc �;�<0b;c<0

�=�2��<0P=ca2b<0

Mà �2≥0a20với mọi avà �≠0c=0

⇒�;�b;ckhác dấu

⇒�<0b<0thì �>0c>0và �>0b>0thì �<0c<0

b) �=�3��=0Q=yzx3=0�;�≠0y;z=0)

⇒�=0x=0

�=�3��<0Q=yzx3<0(�;�≠0)(y;z=0)

Nếu �;�y;zcùng dấu ⇒�<0x<0

Nếu �;�y;zkhác dấu ⇒�>0x>0

�=�3��>0(�;�≠0)Q=yzx3>0(y;z=0)

Nếu �;�y;zcùng dấu ⇒�>0x>0

Nếu �;�y;zkhác dấu ⇒�<0x<0

13 tháng 10 2019

Bạn tham khảo ở link này :

 https://olm.vn/hoi-dap/detail/214647966991.html

a) Để x là số dương 

=> a - 3 > 0

a > 3 

Vậy để \(x=\frac{a-3}{2}\)là số dương thì a > 3

b) Để x là số âm 

=> a - 3 < 0

=> a < 3

Vậy để \(x=\frac{a-3}{2}\)là số âm thì a < 3

c) Để x = 0

\(\Rightarrow\frac{a-3}{2}=0\)

=> a - 3 = 0

a = 3

Vậy để x không âm cũng không dương thì a = 3

3 tháng 4 2020

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

29 tháng 12 2016

a) x khác 2

b) với x<2

c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)

x-2=(-7,-1,1,7)

x=(-5,1,3,9)

29 tháng 12 2016

a) đk kiện xác định là mẫu khác 0

=> x-2 khác o=> x khác 2

b)

tử số luôn dương mọi x

vậy để A âm thì mẫu số phải (-)

=> x-2<0=> x<2 

c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu

cụ thể

x^2-2x+2x-4+4+3

ghép

x(x-2)+2(x-2)+7 

như vậy chỉ còn mỗi số 7 không chia hết cho x-2

vậy x-2 là ước của 7=(+-1,+-7) ok