Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để giá trị phân thức dc xác định thì x2 -1 # 0 <=> x2 # 1 <=> x # 1 và x # -1 ( giải thích: vì muốn phân thức xác định thì mẫu thức phải khác 0)
(mình ko biết ghi dấu "khác" trong toán, nên ghi đỡ dấu thăng nha, sr bạn)
b) Ta có: x2 + 2x +1 / x2 -1
= (x + 1)2 / (x+1).(x-1)
= (x+1).(x+1) / (x+1).(x-1)
= x+1 / x-1
Vậy phân thức rút gọn của phân thức đã cho là x+1/ x-1
de \(\frac{x^2+2x+1}{x^2-1}\)được xác định => x2-1 khác 0 => x khác +-1
\(\frac{x^2+2x+1}{x^2-1}=\frac{\left(x+1\right)^2}{\left(x+1\right).\left(x-1\right)}=\frac{x+1}{x-1}\)
Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.
\(\hept{\begin{cases}x-2=1\\x^2-5x+6=x-3\end{cases}}\)
\(\hept{\begin{cases}x=3\\x^2-6x+9=0\end{cases}}\)
\(\hept{\begin{cases}x=3\\\left(x-3\right)^2=0\end{cases}}\)phân tích nốt ra thì có x = 3 thỏa mãn
Bấm L IKE ủng hộ nhá :)))
\(\hept{\begin{cases}x=3\\\orbr{\begin{cases}x=3\\x=-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}x=3\\\orbr{\begin{cases}x=3\\x=-3\end{cases}}\end{cases}}\)
a/ đkxđ: x ≠ \(\pm3\)
b/ \(\dfrac{x^2+6x+9}{x^2-9}=\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)
c/ Để phân thức = 0 thì:
\(\dfrac{x+3}{x-3}=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(ktmđkxđ\right)\)
Vậy k có x nào tm đề
Bài làm.
Đặt A = \(\dfrac{x^2+6x+9}{x^2-9}\)
a) Để giá trị phân thức xác định
thì x2 - 9 ≠ 0
⇔ x2 - 32 ≠ 0
⇔ (x - 3).(x + 3) ≠ 0
⇔ x ≠ 3 hoặc x ≠ -3
Vậy x ≠ \(\pm\) 3 thì giá trị của phân thức được xác định
b) A = \(\dfrac{x^2+6x+9}{x^2-9}\)
A = \(\dfrac{x^2+2x.3+3^2}{x^2-3^2}\)
A = \(\dfrac{\left(x+3\right)^2}{\left(x-3\right).\left(x+3\right)}\)
A = \(\dfrac{x+3}{x-3}\)
c) Để phân thưc có giá trị bằng 0
thì x2 - 9 = 0
⇔ x2 - 32 = 0
⇔ (x - 3).(x + 3) = 0
⇔ x - 3 = 0 hoặc x +3 = 0
⇔ x = 3 hoặc x = -3
Chúc bạn học tốt !!!
a, ĐKXĐ: x3+8≠0 ⇔ x≠-2
b, \(\dfrac{2x^2-4x+8}{x^3+8}\)=\(\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)=\(\dfrac{2}{x+2}\)
c, vì x=2 thỏa mãn đkxđ nên khi thay vào biểu thức ta có:
\(\dfrac{2}{2+2}\)=\(\dfrac{1}{2}\)
d, \(\dfrac{2}{x+2}\)=2 ⇔ 2x+4=2 ⇔ 2x=-2 ⇔ x=-1 (TMĐKXĐ)
Nên khi phân thức bằng 2 thì x=-1
Bạn tham khảo nha! Mình không hiểu đề câu d lắm nên không làm câu d, nhưng theo mình đoán câu d có phải sẽ là tìm x để phân thức được giá trị nguyên có đúng không nhỉ?
a) Với điều kiện x ≠ -2 thì giá trị của phân thức xác định
b) \(\dfrac{2x^2-4x+8}{x^3+8}\)
= \(\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
= \(\dfrac{2}{x+2}\)
c) Thay x = 2 vào phân thức, ta được :
\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)
d) Với x ≠ -2 thì giá trị của phân thức được xác định
Cách 1 : Chia \(f(x)\)cho x2 + x + 1
Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)
Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)
Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :
\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)
Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k + 1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1