Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B) luôn có nghĩa với bất kì giá trị nào của X ; X E R
A) luôn có nghĩa với bất kì giá trị nào của X ; X E R
\(a,\sqrt{x^2-8x+18}=\sqrt{x^2-8x+16+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\)
Vì \(\left(x-4\right)^2+2>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
\(b,\sqrt{\frac{3x+4}{x-2}}\)
\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)
\(\frac{3x+4}{x-2}\ge0\)\(\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< -\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)
Mà \(x\ne2\)\(\Rightarrow x>2\)hoặc \(x< -\frac{4}{3}\)
a, x-2 khác 0 suy ra x khác 2
x-2 lớn hơn hoặc bằng 0 suy ra x lớn hơn hoặc bằng2
Nên x lớn hơn 2
b, x+2 \(\ne\)0 \(\Rightarrow\)x\(\ne\)-2
x-2 \(\ge\)0 \(\Rightarrow\)x \(\ge\)2
Vậy x\(\ge\)2
a) \(\sqrt{x^2-8x+18}=\sqrt{\left(x-4\right)^2+2}\)
Ta có:\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+2\ge0\)
Vậy biểu thức \(\sqrt{x^2-8x+18}\)thỏa mãn với mọi x.
b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2>0\\3-2x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{2}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow\frac{2}{3}< x< \frac{3}{2}\)
Vậy \(ĐKXĐ:\frac{2}{3}< x< \frac{3}{2}\)
c) Để \(\frac{3x+4}{x-2}\)có nghĩa thì \(x\ne2\)
Để \(\sqrt{\frac{3x+4}{x-2}}\)thì 3x + 4 và x - 2 hoặc cùng dương hoặc cùng âm hoặc 3x + 4 = 0
\(TH1:3x+4=0\Leftrightarrow x=\frac{-4}{3}\)
\(TH2:\hept{\begin{cases}3x+4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-4}{3}\\x>2\end{cases}}\Leftrightarrow x>2\)
\(TH3:\hept{\begin{cases}3x+4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-4}{3}\\x< 2\end{cases}}\Leftrightarrow x< \frac{-4}{3}\)
Câu b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2\ge0\\3-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)
Vậy \(ĐKXĐ:\frac{2}{3}\le x\le\frac{3}{2}\)
\(a,\)Để \(\sqrt{-3x}\)có nghĩa \(\Leftrightarrow-3x\ge0\Rightarrow x\le0\)
\(b,\)Để \(\sqrt{4-2x}\)có nghĩa \(\Leftrightarrow4-2x\ge0\Rightarrow-2\left(x-2\right)\ge0\Rightarrow x-2\le0\Leftrightarrow x\le2\)
\(c,\)Để \(\sqrt{-3x+2}\)có nghĩa \(\Leftrightarrow-3x+2\ge0\Rightarrow-3x\ge-2\Leftrightarrow x\le\frac{2}{3}\)
\(d,\)Để \(\sqrt{3x+1}\)có nghĩa \(\Leftrightarrow3x+1\ge0\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)
\(e,\)Để \(\sqrt{9x-2}\)có nghĩa \(\Leftrightarrow9x-2\ge0\Rightarrow9x\ge2\Rightarrow x\ge\frac{2}{9}\)
\(f,\)Để \(\sqrt{6x-1}\)có nghĩa \(\Leftrightarrow6x-1\ge0\Rightarrow6x\ge1\Rightarrow x\ge\frac{1}{6}\)
a) \(x\le0\)
\(b)2x\le4\Leftrightarrow x\le2\)
\(c)-3x\ge-2\Leftrightarrow x\le\frac{2}{3}\)
..........
a, ĐK \(\hept{\begin{cases}a\ge1\\a\le-1\end{cases}}\)
b, ĐK a\(\le\)2
a) Ta có: \(\sqrt{a^2-1}=\sqrt{\left(a+1\right)\left(a-1\right)}\)
Để \(\sqrt{a^2-1}\) có nghĩa thì \(\left(a+1\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a\le-1\\a\ge1\end{cases}}\)