Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt\(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
(x+y+z)3=24+x3+y3+z3(x+y+z)3=24+x3+y3+z3
⇔3(x+y)(x+z)(x+z)=24⇔3(x+y)(x+z)(x+z)=24
⇒3(2a+4b)(2b+4c)(2c+4a)=24⇒3(2a+4b)(2b+4c)(2c+4a)=24
⇒(a+2b)(b+2c)(c+2a)=1⇒(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Chúc bạn học tốt!
Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
bạn chuyển về dạng pt bậc 2 rồi giải: 4b2 + 2abc + 5a2 + 3c2 - 60 = 0 . giải beta = (az)2 - 4( 5a2 + 3c2 - 60) = (-a2 + 12)(-c2 +20) > 01
\(b_1=\frac{-a^2+\sqrt{\left(-a^{2^{ }}+12\right)\left(-c^{2^{ }}+20\right)}}{4}\)\(\le\)..... \(\frac{3c-\left(a+c\right)^2}{8}\).
tương tự giải đối với a, c .. Suy ra : a+b+c\(\le\)\(\frac{35-\left(b+c\right)^2+10\left(b+c\right)}{10}\)= \(\frac{-t^2+10t+35}{10}\)=\(\frac{60-\left(t^2-10t+25\right)^{ }}{10}\)=\(\frac{60-\left(t-5\right)^2}{10}\)=\(\frac{60-\left(b+c-5^{ }\right)^2}{10}\)\(\le\)\(\frac{60}{10}=6\).Dấu bằng xảy ra\(\Leftrightarrow\) b +c - 5 = 0 và 15- b2 = 20 - c2
\(\Leftrightarrow\)a=1,b= 2, c= 3.
Áp dụng Bất đẳng thức Cauchy cho 3 số thực dương ta có :
\(a^2b+b^2c+c^2a\ge3\sqrt[3]{a^2bb^2cc^2a}=3\sqrt[3]{a^3b^3c^3}=3abc\)
Khi đó :\(P\ge3abc=\left(a+b+c\right)\left(abc\right)\)
...
Ta có:
Vt = 1/a +1/b +1/b >= 9/(a+2b)
Mặt khác
(a+2b)^2<=(1+2)(a^2 +2b^2) <=3*3c^2
=>(a+2b)<=3c
9/(a+2b)>=9/3c =3/c
=Vt >=3/c dpcm
Dấu "="xảy ra khi a=b=c =1
Ta có:
Vt = 1/a +1/b +1/b >= 9/(a+2b)
Mặt khác
(a+2b)^2<=(1+2)(a^2 +2b^2) <=3*3c^2
=>(a+2b)<=3c
9/(a+2b)>=9/3c =3/c
=Vt >=3/c dpcm
Dấu "="xảy ra khi a=b=c =1
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
Vì \(-2\le a;b;c\le5\Rightarrow\hept{\begin{cases}\left(a+2\right)\left(a-5\right)\le0\\2\left(b+2\right)\left(b-5\right)\le0\\3\left(c+2\right)\left(c-5\right)\le0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a^2-3a-10\le0\\2b^2-6b-20\le0\\3c^2-9b-30\le0\end{cases}}\)
\(\Rightarrow a^2+2b^2+3c^2-3\left(a+2b+3c\right)-60\le0\)
\(\Rightarrow a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\) (ĐPCM)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=5\end{cases};\orbr{\begin{cases}b=-2\\b=5\end{cases};\orbr{\begin{cases}c=-2\\c=5\end{cases}}}}\)
Lời giải:
Vì $a,b,c$ không âm và $a+b+c=2\Rightarrow 0\leq a,b,c\leq 2$
Khi đó:
$a\leq 12a$
$2b^2=2b.b\leq 4b\leq 12b$
$3c^3=3c^2.c\leq 3.2^2.c=12c$
$\Rightarrow P=a+2b^2+3c^3\leq 12(a+b+c)=24$
Vậy $P_{\max}=24$ khi $(a,b,c)=(0,0,2)$