\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2020

Đề lạ đời, sao lại tìm các số thực dương a,b,c, đáng lẽ phải là cho các số thực dương a,b,c chứ. Mà đã thực dương rồi sao \(c\ge0\)(c = 0 đâu có nghĩa là c dương)

Mình nghĩ đề đúng phải là: Cho các số thực dương a, b, c thỏa mãn \(c\ge a\)(vì sau khi suy nghĩ và viết lại BĐT thì khi ta nhân hai phân số \(\frac{b}{a}.\frac{c}{b}=\frac{c}{a}\ge1\), cũng có thể đấy chứ) . CMR:...

17 tháng 7 2020

Bất đẳng thức đã cho tương đương với \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{4}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{2}\)

Đặt \(\frac{b}{a}=x,\frac{c}{b}=y\left(x,y>0\right)\). Khi đó \(\frac{a}{c}=\frac{1}{xy}\). Bất đẳng thức cần chứng minh trở thành \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Trước hết ta chứng minh bất đẳng thức \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)(*) với x, y là các số dương 

Thật vậy: (*)\(\Leftrightarrow\left(1-xy\right)^2+xy\left(x-y\right)^2\ge0\)*đúng*

Ta quy bài toán về chứng minh \(\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Đặt \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\). Áp dụng bất đẳng thức Cauchy ta được:\(\frac{4x^2y^2}{\left(1+xy\right)^2}+1\ge\frac{4xy}{1+xy}\)

Khi đó \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}+1-1\ge\frac{1}{xy+1}+\frac{4xy}{1+xy}-1\)\(=\frac{3xy}{1+xy}=\frac{3}{\frac{1}{xy}+1}\)(1)

Từ giả thiết \(c\ge a\)suy ra \(\frac{a}{c}\le1\)hay \(\frac{1}{xy}\le1\)(2)

Từ (1) và (2) suy ra \(\frac{3}{\frac{1}{xy}+1}\ge\frac{3}{1+1}=\frac{3}{2}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

25 tháng 11 2019

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow xyz=1\)

Không khó để chứng minh \(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z\)

\(VT=\Sigma\frac{y^2z}{x^2\left(1+2z\right)}=\Sigma\frac{\left(\frac{y^2}{x^2}\right)}{\frac{1+2z}{z}}\ge\frac{\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+6}\)

\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+6}\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+6}\)

Đặt \(t=x+y+z\ge3\sqrt[3]{xyz}=3\).Cần chứng minh:

\(f\left(t\right)=\frac{t^2}{\frac{t^2}{3}+6}\ge1\Leftrightarrow\frac{2}{3}\left(t-3\right)\left(t+3\right)\ge0\)(đúng)

IS that true?

25 tháng 11 2019

Làm xong em mới nhận ra không cần đổi biến:D

Ta có:

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=3\sqrt[3]{\frac{a^3}{abc}}=3a\)

Tương tự: \(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3b;\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3c\)

Cộng theo vế 3 BĐT trên suy ra \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)

Trở lại bài toán: \(VT=\Sigma_{cyc}\frac{\left(\frac{a^2}{b^2}\right)}{c+2}\ge\frac{\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}=\frac{t^2}{t+6}\)(với \(t=a+b+c\ge3\sqrt[3]{abc}=3\))

Cần chúng minh: \(\frac{t^2}{t+6}\ge1\Leftrightarrow t^2-t-6\ge0\Leftrightarrow\left(t-3\right)\left(t+2\right)\ge0\)(đúng)

30 tháng 4 2020

\(P=\frac{bc}{2ab+ac}+\frac{ca}{2ab+bc}+\frac{4ab}{bc+ca}\)

Xét \(Q=P+3=\frac{bc}{2ab+ac}+1+\frac{ca}{2ab+bc}+1+\frac{4ab}{bc+ca}+1\)

\(Q=\frac{2ab+ac+bc}{2ab+ac}+\frac{2ab+ac+bc}{2ab+bc}+\frac{4ab+bc+ca}{bc+ca}\)

\(=\left(2ab+ac+bc\right)\left(\frac{1}{2ab+ac}+\frac{1}{2ab+bc}\right)+\frac{4ab+bc+ca}{bc+ca}\)

\(\ge\left(2ab+ac+bc\right)\frac{4}{4ab+ac+bc}+\frac{4ab+bc+ca}{bc+ca}=K\)(Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a, b không âm)

\(K=\frac{2\left(4ab+ac+bc\right)+2\left(ac+bc\right)}{4ab+ac+bc}+\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\)\(+\frac{7\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\)

\(=2+\left[\frac{2\left(ac+bc\right)}{4ab+ac+bc}+\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\right]+\frac{7}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)

\(\ge2+2\sqrt{\frac{2\left(ac+bc\right)}{4ab+ac+bc}.\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}}+\frac{7}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)(Áp dụng BĐT Cô - si cho 2 số không âm)

\(=\frac{37}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)

Mặt khác: \(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=\frac{2\left(a^2+b^2\right)}{ab}+\frac{c\left(a^3+b^3\right)}{a^2b^2}\)

\(=\frac{2\left(a^2+b^2\right)}{ab}+\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}\)\(\ge\frac{2.2ab}{ab}+\frac{c\left(a+b\right)\left(2ab-ab\right)}{a^2b^2}=4+\frac{ac+bc}{ab}\)(theo BĐT \(a^2+b^2\ge2ab\))

\(\Rightarrow\frac{ac+bc}{ab}\le2\Leftrightarrow\frac{ab}{ac+bc}\ge\frac{1}{2}\)

\(\Rightarrow K\ge\frac{37}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\ge\frac{37}{9}+\frac{7}{9}.\frac{4}{2}=\frac{17}{3}\)

Ta có \(Q=P+3\ge K\ge\frac{17}{3}\Rightarrow P\ge\frac{17}{3}-3=\frac{8}{3}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}2ab+ac=2ab+bc\\\frac{2\left(ac+bc\right)}{4ab+ac+bc}=\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\\a=b\end{cases}}\)\(\Leftrightarrow a=b=c\)

1 tháng 5 2020

Từ \(2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=6\Rightarrow6=\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{2\left(a^2+b^2\right)}{ab}\)

ta có \(a^2+b^2\ge2ab\Rightarrow6=\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{2\left(a^2+b^2\right)}{ab}\ge\frac{c\left(a+b\right)}{ab}+4\)

\(\Rightarrow0< \frac{c\left(a+b\right)}{ab}\le2\)

Lại có 

\(\frac{bc}{a\left(2b+c\right)}+\frac{ac}{b\left(2a+c\right)}=\frac{\left(bc\right)^2}{abc\left(2b+c\right)}+\frac{\left(ac\right)^2}{abc\left(2a+c\right)}\ge\frac{\left(bc+ac\right)^2}{2abc\left(a+b+c\right)}\)\(=\frac{\left[c\left(a+b\right)\right]^2}{2abc\left(a+b+c\right)}\)

và \(abc\left(a+b+c\right)=ab\cdot bc+bc\cdot ba+ab\cdot ca\le\frac{\left(ab+bc+ca\right)^2}{3}\)

\(\Rightarrow\frac{bc}{a\left(2b+c\right)}+\frac{ac}{b\left(2a+c\right)}\ge\frac{3}{2}\left(\frac{c\left(a+b\right)}{ab+bc+ca}\right)^2=\frac{3}{2}\left(\frac{\frac{c\left(a+b\right)}{ab}}{1+\frac{c\left(a+b\right)}{ab}}\right)^2\)

Đặt \(t=\frac{c\left(a+b\right)}{ab}\Rightarrow P\ge\frac{3t^2}{2\left(1+t\right)^2}+\frac{4}{t}\left(0< t\le2\right)\)

Có \(\frac{3t^2}{2\left(1+t\right)^2}+\frac{4}{t}=\left(\frac{3t^2}{\left(1+t\right)^2}+\frac{4}{t}-\frac{8}{3}\right)+\frac{8}{3}=\frac{-7t^2-8t^2+32t+24}{6t\left(1+t\right)^2}+\frac{8}{3}\)

\(=\frac{\left(t-2\right)\left(-7t^2-22t-12\right)}{6t\left(1+t\right)^2}\ge0\forall t\in(0;2]\)

=> \(\frac{\left(t-2\right)\left(-7t^2-22t-12\right)}{6t\left(1+t\right)^2}+\frac{8}{3}\ge\frac{8}{3}\forall t\in(0;2]\frac{1}{2}\)

Dấu "=" xảy ra <=> t=2 hay a=b=c

23 tháng 1 2021

\(\text{⋄}\)Dễ có: \(B\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)

\(\text{⋄}\)Đặt \(b+c=x;c+a=y;a+b=z\left(x,y,z>0\right)\)thì \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)

Giả thiết được viết lại thành: \(x+y+z\le3\)và ta cần tìm giá trị nhỏ nhất của \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)\)

\(\text{⋄}\)Ta có: \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)=27+36\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+48\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{64}{xyz}\)\(\ge27+36.\frac{9}{x+y+z}+48.\frac{27}{\left(x+y+z\right)^2}+64.\frac{27}{\left(x+y+z\right)^3}\ge343\)

Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1/2

23 tháng 2 2022

Vì \(abc=1\)nên trong 3 số a,b,c luôn có 2 số nằm cùng phía so với 1.

Không mất tính tổng quát ta giả sử 2 số đó là a và b, khi đó ta có:

\(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a+b\le1+ab=\frac{c+1}{c}\)

Do đó ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(1+a+b+ab\right)\left(c+1\right)\)

\(=2\left(1+ab\right)\left(1+c\right)\le\frac{2\left(c+1\right)^2}{c}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{1}{\left(1+ab\right)\left(1+\frac{a}{b}\right)}+\frac{1}{\left(1+ab\right)\left(1+\frac{b}{a}\right)}\)

\(=\frac{b}{\left(1+ab\right)\left(a+b\right)}+\frac{a}{\left(1+ab\right)\left(a+b\right)}=\frac{1}{1+ab}=\frac{c}{c+1}\)

Do đó ta được:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=1\)

Như vậy bất đẳng thức ban đầu được chứng minh. Đẳng thức xẩy ra khi \(a=b=c=1\).

13 tháng 5 2018

Với \(a=b=c=\frac{1}{3}\Rightarrow P=2019\)

Ta sẽ chứng minh \(P=2019\) là GTNN của \(P\)

Thật vậy \(2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\ge2019\)

\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-1\right)+\frac{\left(a+b+c\right)^2}{3\left(a^2+b^2+c^2\right)}-1\ge0\)

\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\left(a+b+c\right)\right)+\frac{\left(a+b+c\right)^2-3\left(a^2+b^2+c^2\right)}{3\left(a^2+b^2+c^2\right)}\ge0\)

\(\Leftrightarrow2018\left(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{a}\right)-\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{3\left(a^2+b^2+c^2\right)}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\left(\frac{2018}{b}-\frac{1}{3\left(a^2+b^2+c^2\right)}\right)\right)\ge0\) *Luôn đúng*

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

8 tháng 8 2017

bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))

8 tháng 8 2017

em moi co lop 7