K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt A=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(A+3=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\)

\(A+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\)

\(A+3=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

CM:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng:\(\Rightarrow A+3\ge\left(a+b+c\right)\left(\dfrac{9}{a+b+b+c+c+a}\right)=\dfrac{9}{2}\)

\(\Rightarrow A\ge\dfrac{3}{2}\left(đpcm\right)\)

a)Áp dụng bđt AM-GM cho 6 số không âm a+b,b+c,c+a ta được

\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

TT\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Nhân vế theo vế ta được:\(2\left(a+b+c\right)\cdot\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\)\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

5 tháng 4 2018

Cám ơn bạn nhiều nha^-^

NV
20 tháng 6 2020

\(\frac{a^3+b^3+c^3-3abc}{a+b+c}=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{a+b+c}=\frac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a+b+c}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a+b+c}=a^2+b^2+c^2-ab-bc-ca\)

\(=\frac{1}{2}\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\right)\)

\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đpcm)

11 tháng 6 2019

•๖ۣۜAƙαĭ ๖ۣۜHαɾυмα•™ [ RBL ] ❧PEWDS☙ chỉ biết đi copy thôi à ?

a) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

b) \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\cdot\left(-c\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)( đpcm )

ta xét vế trái a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3.(1) 
Mà theo giả thuyết a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3 
Thay vào`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(nhân tử chúng ta có)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
theo giả thuyết ta có: a+b+c=0 suy ra c= -(a+b) 
thay vào (2) ta dc 
=3abc 
ta kết luận :vế trái= vế phải 

chúc bn hc tốt

31 tháng 5 2018

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)

16 tháng 9 2019

<=> \(\frac{b+c-a}{2a}+1+\frac{a-b+c}{2b}+1+\frac{a+b-c}{2c}+1\ge\frac{3}{2}+3\)

<=> \(\frac{a+b+c}{2c}+\frac{a+b+c}{2b}+\frac{a+b+c}{2c}\ge\frac{9}{2}\)

<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=> \(\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\ge9\)

<=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)

Ap dung bdt  \(\frac{a}{b}+\frac{b}{a}\ge2\)

Suy ra ve trai >= 2.3=6=ve phai

=> DPCM

Dau = xay ra <=> a=b=c

mik phai di hoc nen tra loi tat mong ban thong cam

16 tháng 9 2019

cảm ơn nhiều ạ