K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

☘ Áp dụng bất đẳng thức AM - GM

\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}=1\)

\(\Leftrightarrow1-\dfrac{a}{1+a}=\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\)

\(\Rightarrow\dfrac{1}{1+a}\ge3\sqrt[3]{\dfrac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

☘ Tương tự, ta cũng có:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+c}\ge3\sqrt[3]{\dfrac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+d}\ge3\sqrt[3]{\dfrac{abc}{\left(1+a\right)\left(1+c\right)\left(1+b\right)}}\)

☘ Nhân vế theo vế

\(\Rightarrow\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\dfrac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)

\(\Rightarrow abcd\le\dfrac{1}{81}\)

☘ Dấu "=" xảy ra khi \(a=c=b=d=\dfrac{1}{3}\)

Nguồn: https://hoc24.vn/hoi-dap/question/463672.html

16 tháng 10 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{1}{a+1}\ge1-\dfrac{1}{b+1}+1-\dfrac{1}{c+1}+1-\dfrac{1}{d+1}\)

\(=\dfrac{b}{b+1}+\dfrac{c}{c+1}+\dfrac{d}{d+1}\)\(\ge3\sqrt[3]{\dfrac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)

Tương tự cho 3 BĐT còn lại cũng có:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\dfrac{1}{c+1}\ge3\sqrt[3]{\dfrac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}};\dfrac{1}{d+1}\ge3\sqrt[3]{\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân theo vế 4 BĐT trên ta có:

\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\dfrac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow1\ge81abcd\Leftrightarrow abcd\le\dfrac{1}{81}\)

28 tháng 11 2017

câu b là áp dụng bất đẳng thức cô -si ko cần chứng minh

a,Áp dụng bất đẳng thức Cô-si cho 2 số dương a,\(\dfrac{1}{b}\)ta có

a+\(\dfrac{1}{b}\)>=\(2\sqrt{\dfrac{a}{b}}\)

chứng minh tương tự ta có

b+\(\dfrac{1}{c}\)>=2\(\sqrt{\dfrac{b}{c}}\)

c+\(\dfrac{1}{a}\)>=\(2\sqrt{\dfrac{c}{a}}\)

nhân chúng vs nhau ta đc cái cần phải chứng minh

29 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{\left(1+1+1+1\right)^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

31 tháng 1 2018

Chỉ bằng các kiến thức cho trong SGK (bất đẳng thức Cô si cho hai số không âm; bất đẳng thức Bunhiacopxki cho 2 cặp số) có thể giả bài toán như sau:

Ta có \(\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)=\)

\(=a\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)+d\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

\(=4+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{a}{d}+\dfrac{d}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{d}+\dfrac{d}{b}\right)+\left(\dfrac{c}{d}+\dfrac{d}{c}\right)\)

\(\ge4+2+2+2+2+2+2=16\)

Từ đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\). Đẳng thức xảy ra khi và chỉ khi \(\dfrac{a}{b}=\dfrac{b}{a};\dfrac{a}{c}=\dfrac{c}{a};\dfrac{a}{d}=\dfrac{d}{a};\dfrac{b}{c}=\dfrac{c}{b};...\Leftrightarrow a=b=c=d\)

3 tháng 12 2017

☘ Đặt \(\dfrac{a}{1+b}=x\text{ và }\dfrac{b}{1+c}=y\text{ và }\dfrac{c}{1+a}=y\)

\(\Rightarrow x+y+z=1\)

☘ Ta có:

\(P=\left(\dfrac{1}{x}-1\right)\left(\dfrac{1}{y}-1\right)\left(\dfrac{1}{z}-1\right)\)

\(=\left(\dfrac{x+y+z}{x}-1\right)\left(\dfrac{x+y+z}{y}-1\right)\left(\dfrac{x+y+z}{z}-1\right)\)

\(=\dfrac{\left(y+z\right)\left(x+z\right)\left(x+y\right)}{xyz}\)

☘ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow P\ge\dfrac{8xyz}{xyz}=8\)

☘ Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

30 tháng 12 2022

1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)

16 tháng 3 2018

Đặt \(\left\{{}\begin{matrix}x=a-\dfrac{1}{2}\\y=b-\dfrac{1}{2}\\z=c-\dfrac{1}{2}\\t=d-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow x+y+z+t=0\)

\(BDT\Leftrightarrow\dfrac{2\left(2x+1\right)}{4x^2+3}+\dfrac{2\left(2y+1\right)}{4y^2+3}+\dfrac{2\left(2z+1\right)}{4z^2+3}+\dfrac{2\left(2t+1\right)}{4t^2+3}\le\dfrac{8}{3}\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)^2}{4x^2+3}+\dfrac{\left(2y-1\right)^2}{4y^2+3}+\dfrac{\left(2z-1\right)^2}{4z^2+3}+\dfrac{\left(2t-1\right)^2}{4t^2+3}\ge\dfrac{4}{3}\left(1\right)\)

Ta có: \(4x^2+3=3x^2+3+\left(y+z+t\right)^2\le3x^2+3+3\left(y^2+z^2+t^2\right)\)

\(=3\left(x^2+y^2+z^2+t^2+1\right)\)

\(\Rightarrow\dfrac{\left(2x-1\right)^2}{4x^2+3}\ge\dfrac{\left(2x-1\right)^2}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT_{\left(1\right)}\ge\dfrac{\left(2x-1\right)^2+\left(2y-1\right)^2+\left(2z-1\right)^2+\left(2t-1\right)^2}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

\(=\dfrac{4\left(x^2+y^2+z^2+t^2+1\right)-4\left(x+y+z+t\right)}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

\(=\dfrac{4\left(x^2+y^2+z^2+t^2+1\right)}{3\left(x^2+y^2+z^2+t^2+1\right)}=\dfrac{4}{3}=VP_{\left(1\right)}\)

a=b=c=d=\(\frac{1}{2}\) Uct xem

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\) Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR: 1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\) 2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+...
Đọc tiếp

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

4
AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

8 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)

Dấu " = " xảy ra khi \(a=b=c=1\)