K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

gọi  :1 + 2 + 2^2 + ... + 2^2020 + 2^2021 là A

 ta có : A  =  1 + 2 + 2^2 + ... + 2^2020 + 2^2021 

=>   2A   =   2 + 2^2 + ... + 2^2021 + 2^2022

=>   2A - A   =   2 + 2^2 + ... + 2^2021 + 2^2022 - 1 - 2 - 2^2 -... - 2^2020 - 2^2021

=>  A  = 2^2022  - 1

24 tháng 8 2021

cảm ơn bạn nhé

NM
17 tháng 1 2022

ta có 

\(C=2020\times\left(2021^9+2021^8+...+2021^2+2021^1+1\right)+1\)

\(2020\times\frac{2021^{10}-1}{2021-1}+1=2021^{10}-1+1=2021^{10}\)

1 tháng 11 2021

\(\dfrac{5^{2021}}{5^{2020}}\cdot5^2=5\cdot5^2=5^3\)

52021:52020. 52

= 51.52

=53

29 tháng 3 2020

Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)

\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)

22 tháng 9 2021

a) \(S=1+2+3+...+2021\)

\(=\left(2021+1\right).2021:2\)

\(=2043231\)

b) \(P=1+3+5+...+2021\)

\(=\left(2021+1\right).[\left(2021-1\right):2+1]:2\)

\(=2022.1011:2\)

\(=1022121\)

13 tháng 3 2021

\(2T=2+\dfrac{3}{2^1}+\dfrac{4}{2^2}+...+\dfrac{2020}{2^{2018}}+\dfrac{2021}{2^{2019}}\)

\(T=2T-T=2+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}-\dfrac{2021}{2^{2020}}\).

Đặt \(S=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\Rightarrow2S=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2018}}\Rightarrow S=2S-S=1-\dfrac{1}{2^{2019}}\).

Từ đó \(T=2+1-\dfrac{1}{2^{2019}}-\dfrac{2021}{2^{2020}}< 3\).

30 tháng 12 2021

\(3S=3^2+3^3+...+3^{2022}\)

nên \(S=\dfrac{3^{2022}-3}{2}\)

\(\Leftrightarrow2S+3=3^{2022}=\left(3^{1011}\right)^2\) là số chính phương(đpcm)

22 tháng 12 2022

D

22 tháng 12 2022

D nha

2 tháng 12 2023

A = B