Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=2+2+2^2+2^3+...+2^{99}\)
C=(2+2^2+2^3+...+2^99)+2
2C=2x(2+2^2+2^3+...+2^99)
2C=2^2+2^3+2^4+...+2^100+2
2C-C=(2+2^2+2^3+...+2^100)-(2+2+2^2+2^3+...+2^99)
C=2^100-(2+2^99)
\(125=5^3\)
\(25^2=\left(5^2\right)^2=5^{2.2}=5^4\)
\(\left(5^3\right)^2=5^{3.2}=5^6\)
\(125^5=\left(5^3\right)^5=5^{3.5}=5^{15}\)
\(625^4=\left(5^4\right)^4=5^{4.4}=5^{16}\)
\(125.5^2=5^3.5^2=5^{3+2}=5^5\)
125 = 53
252 = (52)2 = 54
(53)2 = 56
1255 = ( 53)5 = 515
6254 = (54)4 = 516
125 . 52 = 53 . 52 = 55
A = 2 + 2 + 22 + 23 + ..+ 249
=> 2A = 22 + 22 + 23 + 24 + ..+ 250
=> 2A - A = ( 22 + 22 + 23 + 24 + ..+ 250 ) - ( 2 + 2 + 22 + 23 + ..+ 249 )
=> A = 250 + 22 - 2 - 2
=> A = 250 + 22 - 2 . 2
=> A = 250 + ( 22 - 22 )
=> A = 250
\(B=2^1+2^2+2^3+2^4+...2^{20}\)
\(2B=2.\left(2^1+2^2+2^3+2^4+...2^{20}\right)\)
\(2B=2^2+2^3+2^4+...2^{20}+2^{21}\)
\(2B-B=2^{21}-2^1\)
\(B=2^{21}-2\)
\(A=2+2+2^2+2^3+...+2^{99}\)
\(2A=2^2+2^2+2^3+2^4+...+2^{100}\)
\(2A-A=\left(2^2+2^2+2^3+2^4+...+2^{100}\right)-\left(2+2+2^2+2^3+...+2^{99}\right)\)
\(A=2^{100}\)
A = 2 + 2 + 22 + 24 + ......+299
A = 22 + 22 + 24 + ......+299
A = 24 + 24 + ......+299
..........................................
A = 299 + 299
A = 2 100