K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

casio ?
bạn đặt cái cần c/m là A
lấy  \(A-a_1-a_2-...-a_n\) dễ dàng c/m đc nó chia hết cho 6.
vậy tìm dư của A chia 6 t tìm dư của \(1995^{1995}\) khi chia 6 nha

cái này ở Violympic nè

ta có thể đặt a1=1995^1995

Vì 1995^n cha 6 luôn dư 3 nên a1^3 chia 6 dư 3

Vậy ... dư 3

9 tháng 3 2017

Ta có: \(1995^{1995}=a_1+a_2+...+a_n\)

\(\Rightarrow a_1+a_2+...+a_n\)là số lẻ

\(\Rightarrow a_1^3+a_2^3+...+a_n^3\) là số lẻ (1)

Ta lại có: 

\(\left(1995^{1995}\right)^3=\left(a_1+a_2+...+a_n\right)3\)

\(\Leftrightarrow1995^{5985}=a_1^3+a_2^3+...+a_n^3+3A\)(2)

Từ (1) và (2) \(\Rightarrow3A\)là số chẵn hay \(3A⋮6\)

Vậy số dư của \(a_1^3+a_2^3+...+a_n^3\)chia cho 6 sẽ đúng bằng số dư của \(1995^{5985}\)chia cho 6

Ta có: \(1995\text{≡}3\left(mod6\right)\Rightarrow1995^{5985}\text{≡}3^{5985}\left(mod6\right)\)(3)

Mà ta có: \(3^{5985}-3=3\left(3^{5984}-1\right)=3.2.B=6.B\) (B chỉ là ký hiệu phần còn lại. Ký hiệu cho gọn)

Từ đây thì ta có: \(3^{5985}\text{≡}3\left(mod6\right)\)(4)

Từ (3) và (4) \(\Rightarrow1995^{5985}\text{≡}3^{5985}\text{≡}3\left(mod6\right)\)

Vậy \(a_1^3+a_2^3+...+a_n^3\) chia cho 6 dư 3

9 tháng 3 2017

khó quá

14 tháng 1 2017

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

15 tháng 1 2017

\(a_3=3,a_4=\frac{11}{3}\) nên đề sai rồi nha bạn.

31 tháng 10 2019

\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)

\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)

22 tháng 3 2018

44^2 =1936

45^2 =2025

phần thừa dư do 2018 không cp : 2018-[1936+(2025-1936-1 )/2] = 38 số

\(S=\dfrac{2}{1}+\dfrac{4}{2}+\dfrac{6}{3}+...+\dfrac{88}{44}+\dfrac{38}{45}=2.44+\dfrac{38}{45}\)

31 tháng 12 2018

Ta có \(a_1\) là số lẻ\(\Rightarrow a_1^2\) là số lẻ

Tương tự:

\(a_2^2\) là số lẻ

...

\(a_{2018}^2\) là số lẻ

\(a^2_{2019}\)là số lẻ

Ta có tổng của 2018 số lẻ sẽ là một số chẵn

\(\Rightarrow a_1^2+a_2^2+a_3^2+...+a_{2018}^2\) là một số chẵn

\(a^2_{2019}\) là số lẻ

Vậy không tồn tại 2019 số \(a_1,a_2,a_3,...,a_{2019}\)nguyên lẻ thỏa mãn đẳng thức \(a_1^2+a_2^2+a_3^2+...+a_{2018}^2=a^2_{2019}\)