Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=\sqrt{225}=15\)
b: \(=\sqrt{\dfrac{2}{5}\cdot\dfrac{32}{5}}=\sqrt{\dfrac{64}{25}}=\dfrac{8}{5}\)
c: \(=\sqrt{121\cdot36}=11\cdot6=66\)
d: \(=7\cdot1.2\cdot5=35\cdot1.2=42\)
g: \(=\sqrt{\dfrac{27}{10}\cdot\dfrac{3}{2}\cdot5}=\sqrt{\dfrac{81}{20}\cdot5}=\sqrt{\dfrac{81}{4}}=\dfrac{9}{2}\)
Bài 2:
a: \(=\dfrac{1}{3}\cdot0.8\cdot8=\dfrac{8}{3}\cdot\dfrac{4}{5}=\dfrac{32}{15}\)
b: \(=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)
c: \(=\sqrt{\dfrac{1}{144}\cdot\dfrac{100}{49}}=\dfrac{1}{12}\cdot\dfrac{10}{7}=\dfrac{5}{6\cdot7}=\dfrac{5}{42}\)
mấy bài dạng này bn nên sử dụng cách nhân liên hợp hoặc phân tích đa thức thành nhân tử nha . mk lm 1 bài còn lại thì bn tự lm cho quen nha :)
a) ta có : \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}=\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right)\left(2\sqrt{3}+\sqrt{7}\right)}\)
\(=\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{\left(2\sqrt{3}\right)^2-\left(\sqrt{7}\right)^2}=\dfrac{13\sqrt{2}+3\sqrt{42}}{5}\)
gợi ý : b) phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức số \(6\)
c) nhân liên hợp 2 lần nha .
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}-\sqrt{7}}\)
=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right)\left(2\sqrt{3}+\sqrt{7}\right)}{\left(2\sqrt{3}-\sqrt{7}\right).\left(2\sqrt{3}+\sqrt{7}\right)}\)
=\(\dfrac{\left(\sqrt{6}+\sqrt{14}\right).\left(2\sqrt{3}+\sqrt{7}\right)}{12-7}\)
=\(\dfrac{2\sqrt{18}+\sqrt{42}+2\sqrt{42}+\sqrt{98}}{5}\)
=\(\dfrac{6\sqrt{2}+\sqrt{42}+2\sqrt{42}+7\sqrt{2}}{5}\)
=\(\dfrac{3\sqrt{42}+13\sqrt{2}}{5}\)
b) \(\dfrac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
=\(\dfrac{\left(5\sqrt{5}+3\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}-\sqrt{3}\right)}\)
=\(\dfrac{25-5\sqrt{15}+3\sqrt{15}-9}{2}\)
=\(\dfrac{16-2\sqrt{15}}{2}=8-\sqrt{15}\)
Câu c mk chưa làm được
3 bài đầu dễ tự làm nhé.
Bài 4:
\(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(=\dfrac{\sqrt{\left(1-\sqrt{2}\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(1+\sqrt{2}\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)
\(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{1+\sqrt{2}}{3+2\sqrt{2}}\)
\(=\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(1+\sqrt{2}\right)\left(3-2\sqrt{2}\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(3-2\sqrt{2}+3\sqrt{2}-4\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(-1+\sqrt{2}\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}+1-\sqrt{2}\)
\(=0+2\)
\(=2\)
Vậy B là số tự nhiên.
1.
a) nhân cả tử lẫn mẫu với 1+ \(\sqrt{2}-\sqrt{5}\)
b) tương tự a
2.
a) tách 29 = 20 + 9 là ra hằng đẳng thức, tiếp tục.
c) \(\dfrac{3\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\dfrac{3\sqrt{3}}{\left(\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}\right)}=\dfrac{3\sqrt{3}\left(\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}\right)}{\left(\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}\right)\left(\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}\right)}\) = \(\dfrac{3\sqrt{6}+9-3\sqrt{15}}{\left(\sqrt{2}+\sqrt{3}\right)^2-5}\) = \(\dfrac{3\sqrt{6}+9-3\sqrt{15}}{2+2\sqrt{6}+3-5}=\dfrac{3\sqrt{6}+9-3\sqrt{15}}{2\sqrt{6}}\)
= \(\dfrac{\left(3\sqrt{6}+9-3\sqrt{15}\right)\sqrt{6}}{2\sqrt{6}.\sqrt{6}}\) = \(\dfrac{18+9\sqrt{6}-9\sqrt{10}}{12}\)
= \(\dfrac{3\left(6+3\sqrt{6}-3\sqrt{10}\right)}{3.4}=\dfrac{6+3\sqrt{6}-3\sqrt{10}}{4}\)
d) \(\dfrac{4}{1+\sqrt{2}+\sqrt{3}}=\dfrac{4}{\left(\left(1+\sqrt{2}\right)+\sqrt{3}\right)}=\dfrac{4\left(\left(1+\sqrt{2}\right)-\sqrt{3}\right)}{\left(\left(1+\sqrt{2}\right)+\sqrt{3}\right)\left(\left(1+\sqrt{2}\right)-\sqrt{3}\right)}\)
= \(\dfrac{4+4\sqrt{2}-4\sqrt{3}}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{4+4\sqrt{2}-4\sqrt{3}}{1+2\sqrt{2}+1-3}\) = \(\dfrac{4+4\sqrt{2}-4\sqrt{3}}{2\sqrt{2}}\)
\(\dfrac{\left(4+4\sqrt{2}-4\sqrt{3}\right)\sqrt{2}}{2\sqrt{2}\sqrt{2}}=\dfrac{4\sqrt{2}+8-4\sqrt{6}}{4}\) = \(\dfrac{4\left(\sqrt{2}+4-\sqrt{6}\right)}{4}=\sqrt{2}+4-\sqrt{6}\)
câu a thôi nha
câu b:\(\dfrac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}{12}=\dfrac{3\sqrt{2}+2\sqrt{3}-\sqrt{30}}{12}\)
câu c,d tương tự câu b thôi
bản chất lười =))
Bài 1: Đưa thừa số ra ngoài dấu căn:
\(2\sqrt{225a^2}=2.15a=30a\)
Bài 2: Đưa thừa số vào trong dấu căn :
\(x\sqrt{\dfrac{-39}{x}}=\sqrt{x^2.\dfrac{-39}{x}}=\sqrt{-39x}\)
Bài 3: Sắp xếp theo thứ tự tăng dần :
a) \(2\sqrt{3}< 3\sqrt{2}< 2\sqrt{5}< 5\sqrt{2}\)
b) \(4\sqrt{2}< \sqrt{37}< 2\sqrt{15}< 3\sqrt{7}\)
c) \(6\sqrt{\dfrac{1}{3}}< \sqrt{27}< 2\sqrt{28}< 5\sqrt{7}\)
a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)
\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)
b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)
câu e mình viết sai đề, mk sửa lại nhé , với mình bổ sung câu f
e) \(\dfrac{2}{\sqrt[3]{4}+\sqrt[3]{5}}\)
f) \(\dfrac{1}{2-\dfrac{\sqrt[3]{3}}{2}}\)
a. \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
b. \(\dfrac{26}{5-2\sqrt{3}}=\dfrac{26\left(5+2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}=\dfrac{26\left(5+2\sqrt{3}\right)}{13}=2\left(5+2\sqrt{3}\right)=10+4\sqrt{3}\)
c. \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}=\dfrac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\dfrac{3\sqrt{10}}{6}=\dfrac{\sqrt{10}}{2}\)
d. \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\dfrac{23\sqrt{6}}{46}=\dfrac{\sqrt{6}}{2}\)
Lời giải:
a) \(\frac{1}{1-\sqrt[3]{5}}=\frac{1+\sqrt[3]{5}+\sqrt[3]{5^2}}{(1-\sqrt[3]{5})(1+\sqrt[3]{5}+\sqrt[3]{25})}\) \(=\frac{1+\sqrt[3]{5}+\sqrt[3]{25}}{1^3-5}=\frac{1+\sqrt[3]{5}+\sqrt[3]{25}}{-4}\)
b)
\(\frac{1}{\sqrt[3]{2}+\sqrt[3]{3}}=\frac{\sqrt[3]{2^2}-\sqrt[3]{6}+\sqrt[3]{3^2}}{(\sqrt[3]{2}+\sqrt[3]{3})(\sqrt[3]{2^2}-\sqrt[3]{6}+\sqrt[3]{3^2})}\) \(=\frac{\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9}}{2+3}=\frac{\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9}}{5}\)
c)
\(\frac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}=\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{2^2}+\sqrt[3]{2}+1)}=\frac{\sqrt[3]{2}-1}{2-1}=\sqrt[3]{2}-1\)
a) \(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)
b) \(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)
c) \(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\left(5-\sqrt{5}\right)}{20}=\dfrac{5\sqrt{2}-\sqrt{10}}{5}\)
\(a.\)
\(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)
\(b.\)
\(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{\left(3\sqrt{2}\right)^2-\left(2\sqrt{3}\right)^2}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)
\(c.\)
\(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5^2-\left(\sqrt{5}\right)^2}=\dfrac{\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5}\)