Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1000^{1000}< C< 1000^1+1000^2+...+1000^{999}\)
\(\Rightarrow100...0< C< 100100100...1000\)
\(\Rightarrow\) 3 chữ số đầu tiên bên trái số đó là \(100\)
\(M=1^1+2^2+3^3+...+1000^{1000}\)
\(\Rightarrow1000^{1000}< M< 1000^1+1000^2+...+1000^{1000}\)
\(\Rightarrow100000....0000000< M< 100100100100...1001001000\)
( 3001 chữ số ) ( 3001 chữ số )
M nằm giữa hai số có cùng số chữ số và đều bắt đầu là 100 nên 3 chữ số đầu của M cũng vậy.
Ta có : 10001000 = ( 103 )1000 = 103000 =1000.....0000 ( có 3000 chữ số 0 )
Nhận xét : Ta thấy rằng 11 + 22 + 33 + .... + 999999 có số các chữ số 2500
=> 11 + 22 + 33 + .... + 999999 + 10001000 có 3 chữ số đầu là 100
Đặt
\(\left\{\begin{matrix}A=1000^{1000}\\B=1000^1+1000^2+....+1000^{1000}\end{matrix}\right.\)
1000 số hạng
=> A < C < B (1)
Mặt khác :
\(A=\left(10^3\right)^{1000}=10^{3000}=100....000\) ( 3000 số 0 ; 3001 chữ số ) (2)
\(B=1001001001...1000\) ( 3001 chữ số ) (3)
Từ (1) ; (2) và (3) => 3 chữ số đầu tiên của C là 100
Đáp số thì mình đồng ý. Chỉ có là bài làm thì không logic thôi. Bạn làm logic hơn đi
mmmmmmmmmmmmmmmmm...............................................................................
...........................................................................mmmmmmmmmmmmmmmmmmmmmmmm
................................................................................................