Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng \(\Delta\) nhận \(\left(3;-4\right)\) là 1 vtpt nên nhận \(\left(4;3\right)\) là 1 vtcp
Do d song song \(\Delta\) nên d cũng nhận \(\left(4;3\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)
a, Đường phân giác góc phần tư thứ nhất là một nửa đường thẳng x - y = 0 nằm ở góc phần tư thứ nhất
=> d nhận (1 ; -1) làm vecto pháp tuyến
=> PT đi qua M (-2 ; -5) là
x + 2 - y - 5 = 0 ⇔ x - y - 3 = 0
b, c, Lười lắm ko làm đâu :)
\(\overrightarrow{PQ}=(-4;-2)=2(2;1)\)
a) Đường thẳng qua A(3;2) song song với PQ nhận \(\overrightarrow{PQ}=(-4;-2)=2(2;1)\) làm VTCP nên có pt
\(\dfrac{x-3}{2}=\dfrac{y-2}{1}\Leftrightarrow x-2y+1=0\)
b) Đường thẳng trung trực của PQ qua trung điểm của PQ là M(2;-1) và nhận \(\overrightarrow{PQ}=(-4;-2)=2(2;1)\)làm VTPT nên có pt
\(2(x-2)+(y+1)=0\Leftrightarrow 2x+y-3=0\)
d song song \(6x-4y+1=0\) nên d nhận \(\left(6;-4\right)\) là 1 vtpt
Phương trình d:
\(6\left(x-0\right)-4\left(y-0\right)=0\Leftrightarrow6x-4y=0\)