Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y' = - .
a) Ta có: \(y'\left(x_0\right)=k\Leftrightarrow\) y' = -4. \(\Rightarrow\)k= -4. Vậy phương trình tiếp tuyến của hypebol tại điểm (; 2) là y - 2 = -4(x - ) hay y = -4x + 4.
b)Ta có:\(y'\left(x_0\right)=k\Leftrightarrow\) y' (-1) = -1.\(\Rightarrow\) k= -1. Ngoài ra, ta có y(-1) = -1. Vậy phương trình tiếp tuyến tại điểm có tọa độ là -1 là
y - (-1) = -[x - (-1)] \(\Leftrightarrow\) y = -x - 2.
c) Gọi x0 là hoành độ tiếp điểm. Ta có
y' (x0) = - <=> - = - <=> x02 = 4 <=> x0 = ±2.
Với x0 = 2 ta có y(2) = , phương trình tiếp tuyến là
y - = - (x - 2) \(\Leftrightarrow\) y = x + 1.
Với x0 = -2 ta có y (-2) = - , phương trình tiếp tuyến là
y - = - [x - (-2)] \(\Leftrightarrow\) y = - x -1
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
Câu 2:
\(f'\left(x\right)=\frac{-3}{\left(2x-1\right)^2}\)
a/ \(x_0=-1\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-\frac{1}{3}\\f\left(x_0\right)=0\end{matrix}\right.\)
Pttt: \(y=-\frac{1}{3}\left(x+1\right)=-\frac{1}{3}x-\frac{1}{3}\)
b/ \(y_0=1\Rightarrow\frac{x_0+1}{2x_0-1}=1\Leftrightarrow x_0+1=2x_0-1\Rightarrow x_0=2\)
\(\Rightarrow f'\left(x_0\right)=-\frac{1}{3}\)
Pttt: \(y=-\frac{1}{3}\left(x-2\right)+1\)
c/ \(x_0=0\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-3\\y_0=-1\end{matrix}\right.\)
Pttt: \(y=-3x-1\)
d/ \(6x+2y-1=0\Leftrightarrow y=-3x+\frac{1}{2}\)
Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng -3
\(\Rightarrow\frac{-3}{\left(2x_0-1\right)^2}=-3\Rightarrow\left(2x_0-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=-1\\x_0=1\Rightarrow y_0=2\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-3x-1\\y=-3\left(x-1\right)+2\end{matrix}\right.\)
Làm câu 1,3 trước, câu 2 hơi dài tối rảnh làm sau:
1/ \(\lim\limits\frac{n^2+2n+1}{2n^2-1}=lim\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2-\frac{1}{n^2}}=\frac{1}{2}\)
\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{x+1}-x^2+2x+2}{x}=\frac{2-0+0+2}{0}=\frac{4}{0}=+\infty\)
Chắc bạn ghi nhầm đề, câu này biểu thức tử số là \(...-x^2+2x-2\) thì hợp lý hơn
3/ \(y'=2sin2x.\left(sin2x\right)'=4sin2x.cos2x=2sin4x\)
b/ \(y'=4x^3-4x\)
c/ \(y'=\frac{3\left(x+2\right)-1\left(3x-1\right)}{\left(x+2\right)^2}=\frac{7}{\left(x+2\right)^2}\)
d/ \(y'=10\left(x^2+x+1\right)^9\left(x^2+x+1\right)'=10\left(x^2+x+1\right)^9.\left(2x+1\right)\)
e/ \(y'=\frac{\left(2x^2-x+3\right)'}{2\sqrt{2x^2-x+3}}=\frac{4x-1}{2\sqrt{2x^2-x+3}}\)
a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.
Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó
y' = -16x3 +108x2 -162x -2.
b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.
c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .
d) y' = 2tanx.(tanx)' - (x2)' = .
e) y' = sin = sin.
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)
\(\overrightarrow{BA}=\left(6;6\right)=6\left(1;1\right)\)
d cách đều 2 điểm AB khi d đi qua M hoặc d song song AB
TH1: d đi qua M
\(y'=\dfrac{1}{\left(x+1\right)^2}\) , gọi tiếp điểm có hoành độ \(x_0\Rightarrow\) phương trình tiếp tuyến:
\(y=\dfrac{1}{\left(x_0+1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+1}{x_0+1}\)
Do tiếp tuyến qua M nên: \(1=\dfrac{1}{\left(x_0+1\right)^2}\left(-1-x_0\right)+\dfrac{2x_0+1}{x_0+1}\)
\(\Leftrightarrow x_0=1\Rightarrow\)tiếp tuyến: \(y=\dfrac{1}{4}\left(x-1\right)+\dfrac{3}{2}\)
TH2: tiếp tuyến song song AB \(\Rightarrow\) có hệ số góc \(k=\dfrac{1}{1}=1\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)^2}=1\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=-2\Rightarrow y=3\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=1\left(x-0\right)+1\\y=1\left(x+2\right)+3\end{matrix}\right.\)